题目内容

函数f(x)=sinπx+cosπx对任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为(  )
A、
1
2
B、1
C、2
D、4
考点:三角函数的最值
专题:三角函数的求值
分析:由题意可得f(x1)为函数的最小值,f(x2)为函数的最大值,故|x2-x1|的最小值为半个周期,再根据正弦函数的周期性可得结论.
解答: 解:∵函数f(x)=sinπx+cosπx=
2
sin(πx+
π
4
),f(x1)≤f(x)≤f(x2),
可得f(x1)为函数的最小值,f(x2)为函数的最大值,故|x2-x1|的最小值为半个周期,
1
2
π
=1,
故选:B.
点评:本题主要考查正弦函数的周期性和值域,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网