题目内容
已知向量
=(-2,4),
=(1,-2),则
与
的关系是( )
| a |
| b |
| a |
| b |
| A、不共线 | B、相等 |
| C、方向相同 | D、共线 |
考点:平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:由
=(-2,4)=-2(1,-2)=
,利用共线向量基本定理得答案.
| a |
| b |
解答:
解:∵
=(-2,4)=-2(1,-2)=-2
,
∴
与
共线.
故选:D.
| a |
| b |
∴
| a |
| b |
故选:D.
点评:本题考查了平面向量平行的坐标表示,考查了共线向量基本定理,是基础题.
练习册系列答案
相关题目
一只小蜜蜂在边长为4的正三角形内爬行,某时刻此小蜜蜂距三角形三个顶点的距离均超过2的概率为( )
A、1-
| ||||
B、1-
| ||||
C、
| ||||
D、
|
设函数f(x)=sin2x,x∈R,则f(x)是( )
| A、最小正周期为π的奇函数 | ||
| B、最小正周期为π的偶函数 | ||
C、最小正周期为
| ||
D、最小正周期为
|
f(x)是R上周期为3的奇函数,若f(1)<1,f(2)=a2+a-1,则a的取值范围是( )
| A、a<0.5且a≠1 |
| B、-1<a<0 |
| C、a<-1或a>0 |
| D、-1<a<2 |
sin2α等于( )
| A、2sinα |
| B、sin2α |
| C、2sinαcosα |
| D、2sin2α-1 |
若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中的真命题是( )
| A、若m?β,α⊥β,则m⊥α |
| B、若α∩γ=m,β∩γ=n,m∥n,则α∥β |
| C、若m⊥β,m∥α,则α⊥β |
| D、若α⊥γ,α⊥β,则β⊥γ |
对于每一个实数x,f(x)是y=-x2+4和y=3x这两个函数中较小者,则f(x)的最大值是( )
| A、3 | B、4 | C、0 | D、-4 |
若不等式x2+ax+1≥0对一切x∈(0,
]成立,则a的最小值为( )
| 1 |
| 2 |
A、-
| ||
| B、0 | ||
| C、-2 | ||
| D、-3 |