ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª¼«µãÓëÖ±½Ç×ø±êϵµÄÔµãÖØºÏ£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖØºÏ£¬Ô²CµÄ¼«×ø±ê·½³ÌÊǦÑ=asin¦È£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨1£©Èôa=2£¬Ö±ÏßlÓëxÖáµÄ½»µãÊÇM¡¢NÊÇÔ²CÉÏÒ»¶¯µã£¬Çó|MN|µÄ×î´óÖµ£»
£¨2£©Ö±Ïßl±»Ô²C½ØµÃµÄÏÒ³¤µÈÓÚÔ²CµÄ°ë¾¶µÄ$\sqrt{3}$±¶£¬ÇóaµÄÖµ£®
·ÖÎö £¨1£©Ê×ÏÈ£¬¸ù¾ÝËù¸øaµÄÖµ£¬½«Ô²µÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£¬½«Ö±ÏߵIJÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬È»ºó£¬¸ù¾ÝÔ²µÄÐÔÖÊ£¬½«ËùÇóµÄ×îֵת»¯Îªµ½Ô²ÐĵľàÀ룻
£¨2£©Ê×ÏÈ£¬µÃµ½ÔµãÆÕͨ·½³Ì£¬È»ºó£¬½áºÏÔ²µÄÏÒ³¤¹«Ê½£¬½¨Á¢¹ØÏµÊ½Çó½âaµÄÖµ¼´¿É£®
½â´ð ½â£º£¨1£©¡ßa=2£¬
¡àÔ²CµÄ¼«×ø±ê·½³ÌÊǦÑ=2sin¦È£¬
¡à¦Ñ2=2¦Ñsin¦È£¬
¡àx2+y2=2y£¬
¡àx2+y2-2y=0£¬¼´x2+£¨y-1£©2=1£¬
¸ÃÔ²µÄÔ²ÐÄΪP£¨0£¬1£©£¬°ë¾¶Îªr=1£¬
¸ù¾ÝÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$£¬µÃ
4x+3y-8=0£®
¡àÁîy=0£¬µÃx=2£¬
¡àM£¨2£¬0£©£¬
¡ßNÊÇÔ²CÉÏÒ»¶¯µã£¬Ôò|MN|µÄ×î´óֵΪ|MP|+r=$\sqrt{5}$+1£¬
£¨2£©¡ßÔ²CµÄ¼«×ø±ê·½³ÌÊǦÑ=asin¦È£¬
¡à¦Ñ2=a¦Ñsin¦È£¬
¡àx2+y2=ay£¬
¡àx2+£¨y-$\frac{a}{2}$£©2=$\frac{{a}^{2}}{4}$£¬
¸ÃÔ²µÄÔ²ÐÄΪP£¨0£¬$\frac{a}{2}$£©£¬°ë¾¶Îªr=$\frac{|a|}{2}$£¬
Ô²Ðĵ½Ö±ÏߵľàÀëΪd=$\frac{|3¡Á£¨-\frac{a}{2}£©-8|}{5}$
¡à2$\sqrt{{r}^{2}-{d}^{2}}=\sqrt{3}r$£¬
¡à4£¨r2-d2£©=3r2£®
¡àr2=4d2£¬
¡à$\frac{{a}^{2}}{4}$=4¡Á$\frac{1}{25}$£¨$\frac{3}{2}a$+8£©2£¬
¡àa=-$\frac{32}{11}$»òa=-$\frac{352}{11}$£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÔ²µÄ¼«×ø±ê·½³Ì¡¢Ö±ÏߵIJÎÊý·½³ÌµÈ֪ʶ£¬¿¼²éÁËÔ²µÄÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬µÈ֪ʶ£¬ÊôÓÚÖеµÌ⣬¿¼²éÁË»¯¹é˼ÏëÔÚÇó½âÊýѧÎÊÌâÖеÄÓ¦Óã®
| A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 90¡ã |
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| Äê ·Ý | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
| Äê·Ý´úºÅt | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ÈË¿Ú×ÜÊýy | 8 | 8 | 8 | 9 | 9 | 10 | 11 |
| A£® | £¨3£¬9£© | B£® | £¨9£¬3£© | C£® | £¨6£¬14£© | D£® | £¨4£¬11£© |
| A£® | 24¦Ð | B£® | $24¦Ð+8\sqrt{2}¦Ð$ | C£® | $24¦Ð+4\sqrt{2}¦Ð$ | D£® | 32¦Ð |