题目内容
13.(1)证明:DE⊥平面ACD;
(2)当三棱锥C-ABD的体积最大时,求直线CE与平面ADE的夹角的正弦值.
分析 (1)推导出BC⊥AC,CD⊥BC,DE∥BC,由此能证明DE⊥平面ACD.
(2)推导出DC=EB=1,三棱锥C-ABD的体积最大时,AC=BC=2$\sqrt{2}$,以C为原点,CA,CB,CD为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面DAE与平面ABE夹角的余弦值.
解答
证明:(1)∵半圆O的直径为AB,∴BC⊥AC,
∵CD⊥平面ABC,∴CD⊥BC,
∵CD∩AC=C,∴BC⊥平面ACD,
∵DC∥EB,DC=EB,∴BCDE是平行四边形,∴DE∥BC,
∴DE⊥平面ACD.
解:(2)∵$sin∠{E}{A}{B}=\frac{{\sqrt{17}}}{17}$,∴$\frac{BE}{\sqrt{{4}^{2}+E{B}^{2}}}$=$\frac{\sqrt{17}}{17}$,
解得BE=1,∴CD=EB=1,
∵${V}_{C-ADE}={V}_{E-ACD}=\frac{1}{3}{S}_{△ACD}×DE$=$\frac{1}{3}×\frac{1}{2}×AC×CD$×DE
=$\frac{1}{6}×AC×BC$≤$\frac{1}{12}×(A{C}^{2}+B{C}^{2})$
=$\frac{1}{12}×A{B}^{2}$=$\frac{4}{3}$,
当且仅当AC=BC=2$\sqrt{2}$时,等号成立,
以C为原点,CA,CB,CD为x,y,z轴,建立空间直角坐标系,
则D(0,0,1),E(0,2$\sqrt{2}$,1),A(2$\sqrt{2}$,0,0),B(0,2$\sqrt{2}$,0),
∴$\overrightarrow{AB}$=(-2$\sqrt{2}$,2$\sqrt{2}$,0),$\overrightarrow{BE}$=(0,0,1),
$\overrightarrow{DA}$=(2$\sqrt{2}$,0,-1),$\overrightarrow{DE}$=(0,2$\sqrt{2}$,0),
设平面DAE的法向量$\overrightarrow{{n}_{1}}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{DE}=2\sqrt{2}y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DA}=2\sqrt{2}x-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{{n}_{1}}=(1,0,2\sqrt{2})$,
设平面ABE的法向量为$\overrightarrow{{n}_{2}}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{BE}={{z}_{1}}^{\;}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AB}=-2\sqrt{2}{x}_{1}+2\sqrt{2}{y}_{1}=0}\end{array}\right.$,取x1=1,得$\overrightarrow{{n}_{2}}$=(1,1,0),
∴cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{1}{\sqrt{2}•\sqrt{9}}$=$\frac{\sqrt{2}}{6}$.
∴平面DAE与平面ABE夹角的余弦值为$\frac{\sqrt{2}}{6}$.
点评 本题考查线面垂直的证明,考查面面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
①若¬p是q的必要而不充分条件,则p是¬q的充分而不必要条件;
②命题“对任x∈R,都x2≥0”的否定为“存x0∈R,使x02<0”;
③若p∧q为假命题,则p与q均为假命题.( )
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
| 78 | 16 | 95 | 72 | 08 | 14 | 07 | 43 | 63 | 42 | 03 | 20 | 97 | 28 | 01 | 98 |
| 32 | 04 | 92 | 34 | 49 | 35 | 82 | 40 | 36 | 23 | 48 | 69 | 69 | 38 | 74 | 81 |
| A. | 01 | B. | 07 | C. | 08 | D. | 20 |
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
| A. | 圆锥 | B. | 圆柱 | C. | 棱锥 | D. | 棱柱 |
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |