题目内容
15.设Sn为等差数列{an}的前n项和,若a1=1,S7-S5=24,则S6=36.分析 由等差数列通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出S6.
解答 解:∵Sn为等差数列{an}的前n项和,a1=1,S7-S5=24,
∴$\left\{\begin{array}{l}{{a}_{1}=1}\\{{S}_{7}-{S}_{5}=(7{a}_{1}+\frac{7×6}{2}d)-(5{a}_{1}+\frac{5×4}{2}d)=24}\end{array}\right.$,
解得a1=1,d=2,
∴S6=6×1+$\frac{6×5}{2}×2$=36.
故答案为:36.
点评 本题考查数列的前6项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
6.已知抛物线C的顶点在原点,焦点为F(-3,0),C上一点P到焦点F的距离为9,则点P的一个坐标为( )
| A. | (-3,6) | B. | (-3,6$\sqrt{2}$) | C. | (-6,6) | D. | (-6,6$\sqrt{2}$) |
10.
如图,某几何体的主视图和左视图是全等的等腰直角三角形,俯视图是边长为2的正方形,那么它的体积为( )
| A. | $\frac{16}{3}$ | B. | 4 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
20.
如图,已知某几何体的主视图和左视图是全等的等腰直角三角形,俯视图是边长为2的正方形,那么它的体积是( )
| A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | 4 | D. | $\frac{16}{3}$ |