题目内容
7.将函数$f(x)=2sin(2x+\frac{π}{6})$的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则g(0)=2.分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:将函数$f(x)=2sin(2x+\frac{π}{6})$的图象向左平移$\frac{π}{6}$个单位,
得到函数g(x)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{2}$)=2cos2x的图象,
则g(0)=2cos0=2,
故答案为:2.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
18.已知命题p:$\frac{{x}^{2}}{3-a}-\frac{{y}^{2}}{a-5}=1$可表示焦点在x轴上的双曲线;命题q:若实数a,b满足a>b,则a2>b2.则下列命题中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命题的序号为( )
| A. | ① | B. | ③④ | C. | ①③ | D. | ①②③ |
2.过点(2,2)的直线l与圆x2+y2+2x-2y-2=0相交于A,B两点,且$|{AB}|=2\sqrt{3}$,则直线l的方程为( )
| A. | 3x-4y+2=0 | B. | 3x-4y+2=0,或x=2 | C. | 3x-4y+2=0,或y=2 | D. | y=2,或x=2 |
12.若曲线Cl:x2+y2-2x=0与曲线C2:(x-1)(y-mx-m)=0有四个不同的交点,则实数m的取值范围是( )
| A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-\frac{{\sqrt{3}}}{3},0})∪({0,\frac{{\sqrt{3}}}{3}})$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$ |
19.已知圆C:x2+y2=2,点P为直线$x-y+2\sqrt{2}=0$上任意一点,过点P的直线与圆C交于A,B两点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |