ÌâÄ¿ÄÚÈÝ
| ¦Ð |
| 3 |
£¨1£©µ±¦È±ä»¯Ê±£¬ÊÔ½«»õÎïÔËÐеÄʱ¼ät±íʾ³É¦ÈµÄº¯Êý£¨Óú¬ÓÐvºÍlµÄʽ×Ó£©£»
£¨2£©µ±t×îСʱ£¬CµãÓ¦Éè¼ÆÔÚABµÄʲôλÖã¿
¿¼µã£ºÒÑÖªÈý½Çº¯ÊýÄ£Ð͵ÄÓ¦ÓÃÎÊÌâ,¼¯ºÏµÄº¬Òå,º¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨,Èý½Çº¯ÊýµÄ×îÖµ
רÌ⣺ӦÓÃÌâ,½âÈý½ÇÐÎ
·ÖÎö£ºµÚ£¨1£©ÎÊ£¬Ê±¼ät·Ö³ÉÁ½¶Î£¬´ÓDµ½CÉèΪt1£¬´ÓCµ½AÉèΪt2£¬Òª½¨Á¢tÓë¦ÈµÄº¯Êý¹ØÏµ£¬ÐèÒª¹¹ÔìÈý½ÇÐΣ¬ÀûÓÃÕýÓàÏÒ¶¨Àí½â¾ö£®µÚ£¨2£©ÎÊ£¬¸ù¾ÝµÚ£¨1£©ÎÊÈý½Çº¯ÊýµÄÐÎʽ£¬µ±¦È=
ʱ£¬tÈ¡×îСֵ£®
| ¦Ð |
| 2 |
½â´ð£º
½â£º£¨1£©Èçͼ£¬Á¬½ÓAD£¬ÔÚ¡÷ACDÖУ¬AB=BD=l£¬¡ÏB=
£¬
¡àAD=l£¬¡ÏA¨T
£¬
¡ß»õÎï´ÓD´¦ÖÁC´¦ÔËÐÐËÙ¶ÈΪv£¬ÉèÔËÐеÄʱ¼äΪt1£¬ÔòCD=vt1£¬
»õÎï´ÓC´¦ÖÁA´¦ÔËÐÐËÙ¶ÈΪ3v£¬ÉèÔËÐеÄʱ¼äΪt2£¬ÔòAC=3vt2£¬
¡àÔÚ¡÷ACDÖУ¬ÓÉÕýÏÒ¶¨ÀíµÃ£¬
=
£¬
=
¡àt1=
£¬t2=
¡àt=t1+t2=
+
=
£¬£¨
£¼¦È£¼
£©£»
£¨2£©ÓÉ£¨1£©Öªµ±¦È=
£¬t×îС£¬¼´CÔÚABµÄÖеãʱ£¬tÈ¡×îСֵ£®
| ¦Ð |
| 3 |
¡àAD=l£¬¡ÏA¨T
| ¦Ð |
| 3 |
¡ß»õÎï´ÓD´¦ÖÁC´¦ÔËÐÐËÙ¶ÈΪv£¬ÉèÔËÐеÄʱ¼äΪt1£¬ÔòCD=vt1£¬
»õÎï´ÓC´¦ÖÁA´¦ÔËÐÐËÙ¶ÈΪ3v£¬ÉèÔËÐеÄʱ¼äΪt2£¬ÔòAC=3vt2£¬
¡àÔÚ¡÷ACDÖУ¬ÓÉÕýÏÒ¶¨ÀíµÃ£¬
| vt1 |
| sinA |
| l |
| sin(¦Ð-¦È) |
| 3vt2 | ||
sin(¦È-
|
| l |
| sin(¦Ð-¦È) |
¡àt1=
| ||
| 2vsin¦È |
lsin(¦È-
| ||
| 3vsin¦È |
¡àt=t1+t2=
| ||
| 2vsin¦È |
lsin(¦È-
| ||
| 3vsin¦È |
=
3
| ||||
| 6vsin¦È |
| ¦Ð |
| 3 |
| 2¦Ð |
| 3 |
£¨2£©ÓÉ£¨1£©Öªµ±¦È=
| ¦Ð |
| 2 |
µãÆÀ£º±¾Ì⿼²éÁËÈý½âº¯Êý¼°½âÈý½ÇÐÎ֪ʶµÄ×ÛºÏÓ¦Óã¬ÄѶȽϴ󣬹ؼüÊÇͨ¹ý¹¹ÔìÈý½ÇÐÎÀûÓÃÕýÓàÏÒ¶¨Àí¹¹½¨Èý½Çº¯ÊýÄ£ÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿