题目内容
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)试判断是否有97.5%的把握认为“休闲方式与性别有关”?
下面临界值表仅供参考:
(参考公式:K2=
,其中n=a+b+c+d)
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)试判断是否有97.5%的把握认为“休闲方式与性别有关”?
下面临界值表仅供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d)2 |
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)根据共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.得到列联表.
(2)根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到有97.5%的把握认为性别与休闲方式有关系.
(2)根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到有97.5%的把握认为性别与休闲方式有关系.
解答:
解:(1)由所给的数据得到列联表
(2)假设休闲与性别无关,
K2=
=6.201
∵K2>5.024,
∴有97.5%的把握认为“休闲方式与性别有关”.
| 休闲方式 性别 |
看电视 | 运动 | 合计 |
| 女 | 43 | 27 | 70 |
| 男 | 21 | 33 | 54 |
| 合计 | 64 | 60 | 124 |
K2=
| 124×(43×33-27×21)2 |
| 70×54×64×60 |
∵K2>5.024,
∴有97.5%的把握认为“休闲方式与性别有关”.
点评:独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的.
练习册系列答案
相关题目