题目内容
若集合A={x∈R||x+1|+|x-2|≤5},非空集合B={x∈R|2a≤x≤a+3},且B⊆A,则实数a的取值范围是( )
| A、(0,+∞) |
| B、[-1,+∞) |
| C、(-1,0) |
| D、[-1,0] |
考点:集合的包含关系判断及应用
专题:集合
分析:解绝对值不等式求出A,进而根据非空集合B={x∈R|2a≤x≤a+3}满足B⊆A,构造关于a的不等式组,解不等式组可得答案.
解答:
解:∵集合A={x∈R||x+1|+|x-2|≤5}=[-2,3],
由集合B不为空集可得2a≤a+3,即a≤3时,
由B⊆A得
,
解得a∈[-1,0],
故选:D.
由集合B不为空集可得2a≤a+3,即a≤3时,
由B⊆A得
|
解得a∈[-1,0],
故选:D.
点评:本题考查的知识点是集合的包含关系判断及应用,其中根据集合包含的定义,构造关于a的不等式组,是解答的关键.
练习册系列答案
相关题目
A、
| ||
B、
| ||
C、
| ||
D、
|
下列有关命题的说法正确的是( )
| A、命题“若x2=4,则x=2”的否命题为:“若x2=4,则x≠2” |
| B、“x=2”是“x2-6x+8=0”的必要不充分条件 |
| C、命题“若x=y,则cosx=cosy”的逆否命题为真命题 |
| D、命题“存在x∈R,使得x2+x+3>0”的否定是:“对于任意的x∈R,均有x2+x+3<0” |
设F为抛物线y2=8x的焦点,A,B,C为该抛物线上三点,若
+
+
=
,则|
|+|
|+|
|=( )
| FA |
| FB |
| FC |
| 0 |
| FA |
| FB |
| FC |
| A、6 | B、9 | C、12 | D、16 |
已知平行四边形ABCD中,
=(2,8),
=(-3,4),则
的坐标为( )
| AD |
| AB |
| AC |
| A、(-1,-12) |
| B、(-1,12) |
| C、(1,-12) |
| D、(1,12) |
若变量x,y满足
,实数z是2x和-4y的等差中项,则z的最大值等于( )
|
| A、1 | B、2 | C、3 | D、4 |
下列关系正确的是( )
| A、1∉{0,1} |
| B、1∈{0,1} |
| C、1⊆{0,1} |
| D、{1}∈{0,1} |