题目内容

6.设x≥y>0,若存在实数a,b满足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.则$\frac{y}{x}$的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.1

分析 不妨设定点O(0,0),M(0,y),P(a,0),Q(x,y-b),B(x,y),由(x-a)2+(y-b)2=x2+b2=y2+a2.得|PM|=|PQ|=|MQ|,可得:△MPQ是等边三角形.不妨设∠OMP=θ,$(0≤θ≤\frac{π}{6})$,∠BMQ=$\frac{π}{6}$-θ,可得:$\frac{x}{y}$=$\frac{|BM|}{|OM|}$=$\frac{|BM|}{|MQ|}•\frac{|PM|}{|OM|}$=$\frac{cos(\frac{π}{6}-θ)}{cosθ}$=$\frac{\sqrt{3}}{2}$+$\frac{tanθ}{2}$,即可得出.

解答 解:不妨设定点O(0,0),M(0,y),P(a,0),Q(x,y-b),B(x,y),
由(x-a)2+(y-b)2=x2+b2=y2+a2.得|PM|=|PQ|=|MQ|,
∴△MPQ是等边三角形.
不妨设∠OMP=θ,$(0≤θ≤\frac{π}{6})$,则∠BMQ=$\frac{π}{6}$-θ,
∴$\frac{x}{y}$=$\frac{|BM|}{|OM|}$=$\frac{|BM|}{|MQ|}•\frac{|PM|}{|OM|}$=$\frac{cos(\frac{π}{6}-θ)}{cosθ}$=$\frac{\sqrt{3}}{2}$+$\frac{tanθ}{2}$≤$\frac{\sqrt{3}}{2}$+$\frac{tan\frac{π}{6}}{2}$=$\frac{2\sqrt{3}}{3}$,
当且仅当θ=$\frac{π}{6}$时取等号.
故选:A.

点评 本题考查了等边三角形的性质、圆的方程、三角函数求值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网