题目内容
14.设a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则(a$\sqrt{x}$+$\frac{1}{x}$)6展开式中的常数项为240.分析 a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=$sinx{|}_{-\frac{π}{2}}^{\frac{π}{2}}$=2,再利用$(2\sqrt{x}+\frac{1}{x})^{6}$的展开式中通项公式即可得出.
解答 解:a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=$sinx{|}_{-\frac{π}{2}}^{\frac{π}{2}}$=2,
则$(2\sqrt{x}+\frac{1}{x})^{6}$的展开式中通项公式:Tr+1=${∁}_{6}^{r}(2\sqrt{x})^{6-r}(\frac{1}{x})^{r}$=26-r${∁}_{6}^{r}$${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2.
∴常数项=${2}^{4}{∁}_{6}^{2}$=240.
故答案为:240.
点评 本题考查了微积分基本定理、二项式定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.已知命题p:?x∈R,x+1≤ex,则¬p( )
| A. | ?x∈R,x+1>ex | B. | ?x∈R,x+1≥ex | C. | ?x∈R,x+1≥ex | D. | ?x∈R,x+1>ex |
5.已知tan(x+$\frac{π}{2}$)=5,则$\frac{1}{sinxcosx}$=( )
| A. | $\frac{26}{5}$ | B. | -$\frac{26}{5}$ | C. | ±$\frac{26}{5}$ | D. | -$\frac{5}{26}$ |
9.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为( )
| A. | $\frac{1}{2}$ | B. | -3 | C. | $\frac{3}{2}$ | D. | 1 |
6.设x≥y>0,若存在实数a,b满足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.则$\frac{y}{x}$的最大值为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 1 |