题目内容
已知等比数列{an}的前n项和为Sn,且S2=
a2-1,S3=
a3-1.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{
}的前n项和为Tn.
| 3 |
| 2 |
| 3 |
| 2 |
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{
| 1 |
| dn |
考点:等比数列的性质,数列的求和
专题:等差数列与等比数列
分析:(1)由a3=S3-S2结合已知求得等比数列的公比q,再把q代入S2=
a2-1求解a1,则等比数列的通项公式可求;
(2)由an+1=2×3n,an=2×3n-1,an+1=an+(n+1)dn求出dn,进一步得到
,再由错位相减法求
数列{
}的前n项和为Tn.
| 3 |
| 2 |
(2)由an+1=2×3n,an=2×3n-1,an+1=an+(n+1)dn求出dn,进一步得到
| 1 |
| dn |
数列{
| 1 |
| dn |
解答:
解:(1)由已知得a3=S3-S2=
a3-
a2,
∴a3=3a2,则公比q=3,
由S2=
a2-1,得a1+3a1=
a1-1,即a1=2,
因此数列{an}的通项公式为an=2×3n-1;
(2)由(1)知an+1=2×3n,an=2×3n-1,
∵an+1=an+(n+1)dn,
∴dn=
,则
=
,
令Tn=
+
+
+…+
,
则Tn=
+
+
+…+
①
Tn=
+
+…+
+
②
①-②得:
Tn=
+
+
+…+
-
=
+
×
-
=
-
,
∴Tn=
-
.
| 3 |
| 2 |
| 3 |
| 2 |
∴a3=3a2,则公比q=3,
由S2=
| 3 |
| 2 |
| 9 |
| 2 |
因此数列{an}的通项公式为an=2×3n-1;
(2)由(1)知an+1=2×3n,an=2×3n-1,
∵an+1=an+(n+1)dn,
∴dn=
| 4×3n-1 |
| n+1 |
| 1 |
| dn |
| n+1 |
| 4×3n-1 |
令Tn=
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| d3 |
| 1 |
| dn |
则Tn=
| 2 |
| 4×30 |
| 3 |
| 4×31 |
| 4 |
| 4×32 |
| n+1 |
| 4×3n-1 |
| 1 |
| 3 |
| 2 |
| 4×31 |
| 3 |
| 4×32 |
| 3 |
| 4×3n-1 |
| n+1 |
| 4×3n |
①-②得:
| 2 |
| 3 |
| 2 |
| 4×30 |
| 1 |
| 4×31 |
| 1 |
| 4×32 |
| 1 |
| 4×3n-1 |
| n+1 |
| 4×3n |
=
| 1 |
| 2 |
| 1 |
| 4 |
| ||||
1-
|
| n+1 |
| 4×3n |
| 5 |
| 8 |
| 2n+5 |
| 8×3n |
∴Tn=
| 15 |
| 16 |
| 2n+5 |
| 16×3n-1 |
点评:本题考查了等比数列的性质,考查了错位相减法求数列的和,是中档题.
练习册系列答案
相关题目