题目内容

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N*).
(Ⅰ)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(Ⅱ)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围.
考点:数列的应用
专题:综合题,等差数列与等比数列
分析:(Ⅰ)先利用条件求出数列{cn}的通项公式,再证明其满足“三角形”数列的定义即可;
(Ⅱ)先由条件得{an}是三角形数列,再利用f(x)=kx,(k>1)是数列{an}的“保三角形函数”,得到kn+kn+1>kn+2,解得k的取值范围.
解答: 证明:(Ⅰ)由4Sn+1-3Sn=8040得4Sn-3Sn-1=8040,两式相减得4cn+1-3cn=0
所以,cn=2010•(
3
4
)n-1

经检验,此通项公式满足4Sn+1-3Sn=8040 (7分)
显然cn>cn+1>cn+2,因为cn+1+cn+2=2010•(
3
4
)n
+2010(
3
4
)n+1
=2010•(
3
4
)n-1
>cn
所以{cn}是“三角形”数列;
(Ⅱ)显然an=n+1,an+an+1>an+2对任意正整数都成立,
即{an}是三角形数列.(2分)
因为k>1,显然有f(an)<f(an+1)<f(an+2),
由f(an)+f(an+1)>f(an+2)得kn+kn+1>kn+2,解得k<
1+
5
2

所以当k∈(1,
1+
5
2
)时,f(x)=kx是数列{an}的“保三角形函数”.
点评:本题是在新定义下对数列的综合考查.关于新定义的题型,在作题过程中一定要理解定义,并会用定义来解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网