ÌâÄ¿ÄÚÈÝ
5£®ÎªÁËÑо¿Ä³Ñ§¿Æ³É¼¨ÊÇ·ñÔÚѧÉúÐÔ±ðÓйأ¬²ÉÓ÷ֲã³éÑùµÄ·½·¨£¬´Ó¸ßÈýÄê¼¶³éÈ¡ÁË30ÃûÄÐÉúºÍ20ÃûÅ®ÉúµÄ¸Ãѧ¿Æ³É¼¨£¬µÃµ½ÈçÏÂËùʾÄÐÉú³É¼¨µÄƵÂÊ·Ö²¼Ö±·½Í¼ºÍÅ®Éú³É¼¨µÄ¾¥Ò¶Í¼£¬¹æ¶¨80·ÖÒÔÉÏΪÓÅ·Ö£¨º¬80·Ö£©£¨¢ñ£©ÇóÄÐÉúºÍÅ®ÉúµÄƽ¾ù³É¼¨
£¨¢ò£©Çë¸ù¾Ýͼʾ£¬½«2¡Á2ÁÐÁª±í²¹³äÍêÕû£¬²¢¸ù¾Ý´ËÁÐÁª±íÅжϣ¬ÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý10%µÄǰÌáÏÂÈÏΪ¡°¸Ãѧ¿Æ³É¼¨ÓëÐÔ±ðÓйء±£¿
| ÓÅ·Ö | ·ÇÓÅ·Ö | ºÏ¼Æ | |
| ÄÐÉú | |||
| Å®Éú | |||
| ºÏ¼Æ | 50 |
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
| P£¨K2¡Ýk2£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k0 | 0.46 | 0.71 | 1.32 | 2.07 | 2.71 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨¢ñ£©¸ù¾Ýƽ¾ùÊýµÄ¶¨Òå·Ö±ðÇó³öÄÐÉúºÍÅ®ÉúµÄƽ¾ù³É¼¨¼´¿É£»
£¨¢ò£©½«2¡Á2ÁÐÁª±í²¹³äÍêÕû£¬Çó³ökµÄÖµ£¬±È½Ï¼´¿É£»
£¨¢ó£©Í¨¹ý·Ö²ã³éÑùµÄ·½·¨³éÈ¡ÄÐÉú$\frac{30}{50}$¡Á5=3£¨ÈË£©£¬¼ÇΪa£¬b£¬c£¬Å®Éú$\frac{20}{50}$¡Á5=2£¬¼ÇΪ£º1£¬2£¬Çó³öÂú×ãÌõ¼þµÄ¸ÅÂʼ´¿É£®
½â´ð ½â£º£¨¢ñ£©ÉèÄÐÉúºÍÅ®ÉúµÄƽ¾ù³É¼¨·Ö±ðÊÇ$\overline{{x}_{1}}$£¬$\overline{{x}_{2}}$£¬
Ôò${\overline{x}}_{1}$=45¡Á0.1+55¡Á0.1+65¡Á0.2+75¡Á0.3+85¡Á0.2+95¡Á0.1=72£¬
${\overline{x}}_{2}$=$\frac{1}{20}$[40+50¡Á2+60¡Á2+70¡Á4+80¡Á7+90¡Á4+£¨4+3+5+19+32+4£©]=76.35£»
£¨¢ò£©Çë¸ù¾Ýͼʾ£¬½«2¡Á2ÁÐÁª±í²¹³äÍêÕû£¬Èçͼʾ£º
| ÓÅ·Ö | ·ÇÓÅ·Ö | ×Ü¼Æ | |
| ÄÐÉú | 9 | 21 | 30 |
| Å®Éú | 11 | 9 | 20 |
| ×Ü¼Æ | 20 | 30 | 50 |
K2µÄ¹Û²âÖµk=$\frac{5{0£¨9¡Á9-11¡Á21£©}^{2}}{20¡Á30¡Á20¡Á30}$=3.125£¬
¡ß3.125£¾2.71£¬
¡àÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý10%µÄǰÌáÏÂÈÏΪ¡°¸Ãѧ¿Æ³É¼¨ÓëÐÔ±ðÓйء±£»
£¨¢ó£©·Ö²ã³éÑùµÄ·½·¨³éÈ¡ÄÐÉú$\frac{30}{50}$¡Á5=3£¨ÈË£©£¬¼ÇΪa£¬b£¬c£¬
Å®Éú$\frac{20}{50}$¡Á5=2£¬¼ÇΪ£º1£¬2£¬
´Ó5ÈËÖÐѡȡÁ½ÃûѧÉú¹²ÓУº
£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬1£©£¬£¨a£¬2£©£¬£¨b£¬c£©£¬£¨b£¬1£©£¬£¨b£¬2£©£¬
£¨c£¬1£©£¬£¨c£¬2£©£¬£¨1£¬2£©¹²10¸ö½á¹û£¬
ÆäÖÐÖÁÉÙ1ÃûÅ®Éú¹²7¸ö½á¹û£¬
¹ÊÂú×ãÌõ¼þµÄ¸ÅÂÊÊÇp=$\frac{7}{10}$£®
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÎÊÌ⣬¿¼²é¿¼²é·Ö²ã³éÑùÒÔ¼°¸ÅÂʵļÆË㣬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®MÊÇÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©ÉÏÒ»µã£¬FÊÇÅ×ÎïÏßCµÄ½¹µã£¬OÎª×ø±êԵ㣬Èô|MF|=p£¬KÊÇÅ×ÎïÏßC×¼ÏßÓëxÖáµÄ½»µã£¬Ôò¡ÏMKO=£¨¡¡¡¡£©
| A£® | 15¡ã | B£® | 30¡ã | C£® | 45¡ã | D£® | 60¡ã |
16£®¹ýµãPÔÚË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÓÒÖ§ÉÏ£¬Æä×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬PF1µÄ´¹Ö±Æ½·ÖÏß¹ýF2£¬ÇÒԵ㵽ֱÏßPF1µÄ¾àÀëÇ¡ºÃµÈÓÚË«ÇúÏßµÄʵ°ëÖ᳤£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{7}{3}$ | B£® | $\frac{5}{3}$ | C£® | $\frac{5}{4}$ | D£® | $\frac{7}{4}$ |
13£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{e^x}+ax£¬x£¾0\\ \frac{1}{e^x}-ax£¬x£¼0\end{array}$£¬Èôº¯Êýf£¨x£©ÓÐËĸöÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $£¨{-¡Þ£¬-\frac{1}{e}}£©$ | B£® | £¨-¡Þ£¬-e£© | C£® | £¨e£¬+¡Þ£© | D£® | $£¨{\frac{1}{e}£¬+¡Þ}£©$ |
10£®ÉèSnΪµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍ£¬Èô8a2+a5=0£¬Ôò$\frac{{S}_{5}}{{S}_{2}}$µÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{11}{3}$ | B£® | 5 | C£® | -8 | D£® | -11 |