题目内容

在锐角三角形ABC中,求证:cos(B-C)•cos(C-A)•cos(A-B)≥8cosA•cosB•cosC.
考点:两角和与差的余弦函数
专题:解三角形
分析:由三角形中恒等式tanA•tanB•tanC=tanA+tanB+tanC,令x=2tanA+tanB+tanC,y=tanA+2tanB+tanC,z=2tanC+tanA+tanB,可得
cos(B-C)
cosA
=
2x
y+z-x
cos(C-A)
cosB
=
2y
z+x-y
cos(A-B)
cosC
=
2z
x+y-z
,可证明(x+y-z)(y+z-x)(z+x-y)≤xyz成立,即可证明cos(B-C)•cos(C-A)•cos(A-B)≥8cosA•cosB•cosC成立.
解答: 证明:在三角形中有恒等式:tanA•tanB•tanC=tanA+tanB+tanC
所以:
cos(B-C)
cosA
=
sinBsinC+cosBcosC
sinBsinC-cosBcosC
=
tanBtanC+1
tanBtanC-1
=
tanAtanBtanC+tanA
tanAtanBtanC-tanC
=
2tanA+tanB+tanC
tanB+tanC

同理:
cos(C-A)
cosB
=
tanA+2tanB+tanC
tanA+tanC

cos(A-B)
cosC
=
tanA+tanB+2tanC
tanA+tanB

令x=2tanA+tanB+tanC,y=tanA+2tanB+tanC,z=2tanC+tanA+tanB,
则:
cos(B-C)
cosA
=
2x
y+z-x
cos(C-A)
cosB
=
2y
z+x-y
cos(A-B)
cosC
=
2z
x+y-z

于是:
cos(A-B)•cos(B-C)•cos(C-A)
cosA•cosB•cosC
=
8xyz
(x+y-z)(y+z-x)(z+x-y)

因为:x+y-z>0,y+z-x>0,z+x-y>0,
所以:
(x+y-z)(y+z-x)
x+y-z+y+z-x
2
-y

(y+z-x)(z+x-y)
(z+x-y)(x+y-z)
≤x
以上式子相乘,有(x+y-z)(y+z-x)(z+x-y)≤xyz成立,
从而cos(B-C)•cos(C-A)•cos(A-B)≥8cosA•cosB•cosC成立.
当且仅当△ABC为正三角形时取等号.
点评:本题主要考察了三角函数恒等式的证明,考察了不等式的解法,利用结论tanA•tanB•tanC=tanA+tanB+tanC是解题的关键,考查了转化思想,综合性强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网