题目内容

5.已知正项数列{an}满足a1=1,(n+2)an+12-(n+1)an2+anan+1=0,则an=$\frac{2}{n+1}$.

分析 把数列递推式变形,可得(n+2)•$(\frac{{a}_{n+1}}{{a}_{n}})^{2}+\frac{{a}_{n+1}}{{a}_{n}}=n+1$,即$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n+2}$.然后利用累积法得答案.

解答 解:由(n+2)an+12-(n+1)an2+anan+1=0,得
(n+2)•$(\frac{{a}_{n+1}}{{a}_{n}})^{2}+\frac{{a}_{n+1}}{{a}_{n}}=n+1$,即
$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n+2}$.
∴${a}_{n}=\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}•…•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$
=$\frac{n}{n+1}•\frac{n-1}{n}•…•\frac{2}{3}•1=\frac{2}{n+1}$.
故答案为:$\frac{2}{n+1}$.

点评 本题考查数列递推式,考查了累积法求数列的通项公式,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网