ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖª$\overrightarrow{a}$=£¨3£¬4£©£¬$\overrightarrow{b}$=£¨2£¬-1£©£¬ÇÒ£¨$\overrightarrow{a}$+k$\overrightarrow{b}$£©¡Í£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©£®Çó£¨1£©$\overrightarrow{a}$£¬$\overrightarrow{b}$¼Ð½ÇµÄÓàÏÒÖµ£»
£¨2£©kÖµ£®
·ÖÎö £¨1£©Çó³ö|$\overrightarrow{a}$|£¬|$\overrightarrow{b}$|£¬$\overrightarrow{a}•\overrightarrow{b}$£¬´úÈë¼Ð½Ç¹«Ê½¼ÆË㣻
£¨2£©ÓÐÏòÁ¿´¹Ö±µÃ£¨$\overrightarrow{a}$+k$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©=0£¬Áгö·½³Ì½â³ök£®
½â´ð ½â£º£¨1£©$\overrightarrow{a}•\overrightarrow{b}$=6-4=2.$|\overrightarrow{a}|$=$\sqrt{{3}^{2}+{4}^{2}}$=5£¬|$\overrightarrow{b}$|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$£¬
¡àcos£¼$\overrightarrow{a}£¬\overrightarrow{b}$£¾=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{2}{5\sqrt{5}}$=$\frac{2\sqrt{5}}{25}$£®
£¨2£©¡ß£¨$\overrightarrow{a}$+k$\overrightarrow{b}$£©¡Í£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©£¬¡à£¨$\overrightarrow{a}$+k$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©=0£¬
¡à${\overrightarrow{a}}^{2}$-k${\overrightarrow{b}}^{2}$+£¨k-1£©$\overrightarrow{a}•\overrightarrow{b}$=0£¬¼´25-5k+2£¨k-1£©=0£¬½âµÃk=$\frac{23}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | £¨-¡Þ£¬0] | B£® | £¨0£¬1£© | C£® | [1£¬2£© | D£® | [2£¬+¡Þ£© |
| A£® | 2014 | B£® | 2015 | C£® | 2016 | D£® | ²»È·¶¨ |