ÌâÄ¿ÄÚÈÝ
ÒÑÖªF1£¬F2·Ö±ðÊÇÍÖÔ²C1£º
+y2=1£¨a£¾1£©µÄ×ó¡¢ÓÒ½¹µã£¬OÎª×ø±êԵ㣮
£¨¢ñ£©ÈôÍÖÔ²C1ÓëË«ÇúÏßC2£º
-
=1µÄÀëÐÄÂÊ»¥Îªµ¹Êý£¬Çó´ËʱʵÊýaµÄÖµ£»
£¨¢ò£©ÈôÖ±Ïßl¾¹ýµãF1ºÍµã£¨0£¬1£©£¬ÇÒԵ㵽ֱÏßlµÄ¾àÀëΪ
£»ÓÖÁíÒ»ÌõÖ±Ïßm£¬Ð±ÂÊΪ1£¬ÓëÍÖÔ²C1½»ÓÚE£¬FÁ½µã£¬
¡Í
£¬ÇóÖ±ÏßmµÄ·½³Ì£»
£¨¢ó£©ÈôÔÚÖ±Ïßx=
ÉÏ´æÔÚµãP£¬Ê¹Ïß¶ÎPF1µÄÖеãM
¡Í
£®ÇóʵÊýaµÄȡֵ·¶Î§£®
| x2 |
| a2 |
£¨¢ñ£©ÈôÍÖÔ²C1ÓëË«ÇúÏßC2£º
| y2 |
| 3 |
| x2 |
| 1 |
£¨¢ò£©ÈôÖ±Ïßl¾¹ýµãF1ºÍµã£¨0£¬1£©£¬ÇÒԵ㵽ֱÏßlµÄ¾àÀëΪ
| ||
| 2 |
| OE |
| OF |
£¨¢ó£©ÈôÔÚÖ±Ïßx=
| a2 | ||
|
| MF2 |
| PF1 |
¿¼µã£ºÔ²×¶ÇúÏßµÄ×ÛºÏ,Ö±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ
רÌ⣺¼ÆËãÌâ,Æ½ÃæÏòÁ¿¼°Ó¦ÓÃ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©Çó³öË«ÇúÏßµÄÀëÐÄÂÊ£¬¿ÉµÃÍÖÔ²µÄÀëÐÄÂÊ£¬ÔÙÓÉÀëÐÄÂʹ«Ê½£¬¿ÉµÃa=2£»
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪx-cy+c=0£¬Óɵ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉµÃc£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£¬ÉèÖ±Ïßm£ºy=x+d£¬´úÈëÍÖÔ²·½³Ì£¬Ó¦ÓÃΤ´ï¶¨Àí£¬¼°ÏòÁ¿´¹Ö±µÄÌõ¼þ£¬¼´¿ÉµÃµ½d£¬½ø¶øµÃµ½Ö±Ïß·½³Ì£»
£¨¢ó£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬P£¨
£¬t£©£¬Çó³öÏòÁ¿µÄ×ø±ê£¬ÔÙÓÉ
¡Í
£¬ÔËÓÃÊýÁ¿»ýΪ0£¬ÔÙÓÉ
¡Ý0£¬½â²»µÈʽ¼´¿ÉµÃµ½aµÄ·¶Î§£®
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪx-cy+c=0£¬Óɵ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉµÃc£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£¬ÉèÖ±Ïßm£ºy=x+d£¬´úÈëÍÖÔ²·½³Ì£¬Ó¦ÓÃΤ´ï¶¨Àí£¬¼°ÏòÁ¿´¹Ö±µÄÌõ¼þ£¬¼´¿ÉµÃµ½d£¬½ø¶øµÃµ½Ö±Ïß·½³Ì£»
£¨¢ó£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬P£¨
| a2 |
| c |
| MF2 |
| PF1 |
| t2 |
| 2 |
½â´ð£º
½â£º£¨¢ñ£©Ë«ÇúÏßC2£º
-
=1µÄÀëÐÄÂÊΪe2=
=
£¬
ÔòÍÖÔ²C1£º
+y2=1£¨a£¾1£©µÄÀëÐÄÂÊe1=
=
£¬
¼´ÓÐ
=
£¬½âµÃ£¬a=2£»
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪx-cy+c=0£¬
Ôòd=
=
£¬Ôòc=1£¬a2=b2+c2=2£¬
ÔòÍÖÔ²·½³ÌΪ
+y2=1£¬
ÉèÖ±Ïßm£ºy=x+d£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¬3x2+4dx+2d2-2=0£¬
ÓÉÖ±ÏßmÓëÍÖÔ²½»ÓÚE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
Ôò¡÷=16d2-12£¨2d2-2£©£¾0£¬½âµÃd2£¼3£¬
ÓÖx1+x2=-
£¬x1x2=
£¬
ÓÉÓÚOE¡ÍOF£¬Ôòx1x2+y1y2=0£¬¼´x1x2+£¨x1+d£©£¨x2+d£©=0£¬
¼´
-
+d2=0£¬½âµÃ£¬d2=
£¼3£¬¼´ÓÐd=¡À
£¬
ÔòÖ±ÏßmµÄ·½³ÌΪy=x¡À
£»
£¨¢ó£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
P£¨
£¬t£©£¬
=£¨
+c£¬t£©£¬ÖеãM£¨
£¬
£©£¬
=£¨
-c£¬
£©=£¨
£¬
£©£¬
ÓÉÓÚ
¡Í
£¬Ôò
¡Á
+
=0£¬
Ôò
=
=
¡Ý0£¬
ÓÉÓÚa£¾1£¬Ôò£¨2a2-1£©£¨2a2-3£©¡Ý0£¬
¼´ÓÐa2¡Ý
£¬½âµÃ£¬a¡Ý
£®
| y2 |
| 3 |
| x2 |
| 1 |
| ||
|
| 2 | ||
|
ÔòÍÖÔ²C1£º
| x2 |
| a2 |
| 1 |
| e2 |
| ||
| 2 |
¼´ÓÐ
| ||
| a |
| ||
| 2 |
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪx-cy+c=0£¬
Ôòd=
| |c| | ||
|
| ||
| 2 |
ÔòÍÖÔ²·½³ÌΪ
| x2 |
| 2 |
ÉèÖ±Ïßm£ºy=x+d£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¬3x2+4dx+2d2-2=0£¬
ÓÉÖ±ÏßmÓëÍÖÔ²½»ÓÚE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
Ôò¡÷=16d2-12£¨2d2-2£©£¾0£¬½âµÃd2£¼3£¬
ÓÖx1+x2=-
| 4d |
| 3 |
| 2d2-2 |
| 3 |
ÓÉÓÚOE¡ÍOF£¬Ôòx1x2+y1y2=0£¬¼´x1x2+£¨x1+d£©£¨x2+d£©=0£¬
¼´
| 4d2-4 |
| 3 |
| 4d2 |
| 3 |
| 4 |
| 3 |
2
| ||
| 3 |
ÔòÖ±ÏßmµÄ·½³ÌΪy=x¡À
2
| ||
| 3 |
£¨¢ó£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
P£¨
| a2 |
| c |
| F1P |
| a2 |
| c |
| a2-c2 |
| 2c |
| t |
| 2 |
| F2M |
| a2-c2 |
| 2c |
| t |
| 2 |
| a2-3c2 |
| 2c |
| t |
| 2 |
ÓÉÓÚ
| MF2 |
| PF1 |
| a2+c2 |
| c |
| a2-3c2 |
| 2c |
| t2 |
| 2 |
Ôò
| t2 |
| 2 |
| (a2+c2)(a2-3c2) |
| 2c2 |
| (2a2-1)(2a2-3) |
| 2(a2-1) |
ÓÉÓÚa£¾1£¬Ôò£¨2a2-1£©£¨2a2-3£©¡Ý0£¬
¼´ÓÐa2¡Ý
| 3 |
| 2 |
| ||
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²ºÍË«ÇúÏߵķ½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£®Ïûȥδ֪Êý£¬Ó¦ÓÃΤ´ï¶¨Àí£¬¿¼²éÆ½ÃæÏòÁ¿µÄ´¹Ö±µÄÌõ¼þ£¬¿¼²é»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
·½³Ì|x2-1|+1=2x½âµÄ¸öÊýΪ£¨¡¡¡¡£©
| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |