题目内容

20.已知离散型随机变量X的分布列如表所示,则D(X)=(  )
X-101

P
$\frac{1}{2}$$1-\frac{3}{2}q$q2
A.$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{17}{16}$D.$\frac{11}{16}$

分析 由离散型随机变量X的分布列的性质求出q=$\frac{1}{2}$,从而得到E(X)=-$\frac{1}{4}$,由此能求出D(X).

解答 解:由离散型随机变量X的分布列的性质,得:
$\frac{1}{2}+1-\frac{3}{2}q+{q}^{2}$=1,
解得q=$\frac{1}{2}$,或q=1(舍),
∴1-$\frac{3}{2}q$=$\frac{1}{4}$,${q}^{2}=\frac{1}{4}$,
∴E(X)=-1×$\frac{1}{2}+0×\frac{1}{4}+1×\frac{1}{4}$=-$\frac{1}{4}$,
D(X)=(-1+$\frac{1}{4}$)2×$\frac{1}{2}$+(0+$\frac{1}{4}$)2×$\frac{1}{4}$+(1+$\frac{1}{4}$)2×$\frac{1}{4}$=$\frac{11}{16}$.
故选:D.

点评 本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意离散型随机变量的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网