题目内容
4.| A. | $\frac{20}{3}{a^3}$ | B. | 7a3 | C. | $2\sqrt{2}{a^3}$ | D. | 5a3 |
分析 由已知中的三视图,可知该几何体是一个棱长为2a的正方体,切去了八个角所得组合体,求出每个角的体积,相减可得答案.
解答 解:由已知中的三视图,可知该几何体是一个棱长为2a的正方体,切去了八个角所得组合体,
每个角都是三条侧棱两两垂直且长度为a的棱锥,
故组合体的体积V=(2a)3-8×($\frac{1}{3}$×$\frac{1}{2}$a2×a)=$\frac{20}{3}{a^3}$,
故选:A
点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关题目
14.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x-$\stackrel{∧}{a}$;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 7 | 6 | 5 | 4 | 2 |
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
15.下面命题:
①如果让实数a与ai对应,那么实数集与纯虚数集一一对应;
②两个复数互为共轭复数的充要条件是其积为实数;
③x=y=1是x+yi=1+i的充分非必要条件;
④0比-i大.
其中正确的命题的个数是( )
①如果让实数a与ai对应,那么实数集与纯虚数集一一对应;
②两个复数互为共轭复数的充要条件是其积为实数;
③x=y=1是x+yi=1+i的充分非必要条件;
④0比-i大.
其中正确的命题的个数是( )
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
12.设集合A={x|x≥-1},B={x|y=ln(x-2},则A∩∁RB=( )
| A. | [-1,2) | B. | [2,+∞) | C. | [-1,2] | D. | [-1,+∞) |
19.某空间几何体的三视图如图所示,则该几何体的体积是( )

| A. | 32 | B. | 32$\sqrt{2}$ | C. | $\frac{32}{3}$ | D. | $\frac{32}{3}$$\sqrt{2}$ |
16.
如图是一个几何体挖去另一个几何体所得的三视图,若主视图中长方形的长为2,宽为1,则该几何体的表面积为( )
| A. | ($\sqrt{2}$+1)π | B. | ($\sqrt{2}$+2)π | C. | ($\sqrt{2}$+3)π | D. | ($\sqrt{2}$+4)π |
13.两相关变量满足如下关系:
两变量回归直线方程为( )
| x | 10 | 15 | 20 | 25 | 30 |
| Y | 1 003 | 1 005 | 1 010 | 1 011 | 1 014 |
| A. | $\stackrel{∧}{y}$=0.56$\stackrel{∧}{x}$+997.4 | B. | $\stackrel{∧}{y}$=0.63 $\stackrel{∧}{x}$-231.2 | ||
| C. | $\stackrel{∧}{y}$=50.2 $\stackrel{∧}{x}$+501.4 | D. | $\stackrel{∧}{y}$=60.4$\stackrel{∧}{x}$+400.7 |