ÌâÄ¿ÄÚÈÝ
14£®ÎªÁ˽âijµØÇøÄ³ÖÖÅ©²úÆ·µÄÄê²úÁ¿x£¨µ¥Î»£º¶Ö£©¶Ô¼Û¸ñy£¨µ¥Î»£ºÇ§Ôª/¶Ö£©ºÍÀûÈózµÄÓ°Ï죬¶Ô½üÎåÄê¸ÃÅ©²úÆ·µÄÄê²úÁ¿ºÍ¼Û¸ñͳ¼ÆÈç±í£º| x | 1 | 2 | 3 | 4 | 5 |
| y | 7 | 6 | 5 | 4 | 2 |
£¨2£©Èôÿ¶Ö¸ÃÅ©²úÆ·µÄ³É±¾Îª2ǧԪ£¬¼ÙÉè¸ÃÅ©²úÆ·¿ÉÈ«²¿Âô³ö£¬Ô¤²âµ±Äê²úÁ¿Îª¶àÉÙʱ£¬ÄêÀûÈózÈ¡µ½×î´óÖµ£¿£¨±£ÁôÁ½Î»Ð¡Êý£©
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®
·ÖÎö £¨1£©ÓɱíÖеÄÊý¾Ý·Ö±ð¼ÆË㣬¼´¿Éд³öÏßÐԻع鷽³Ì£»
£¨2£©z=x£¨8.4-1.2x£©=-1.2x2+6.4x£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©$\overline{x}$=3£¬$\overline{y}$=4.8
¡à$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{60-5¡Á3¡Á4.8}{55-5¡Á{3}^{2}}$=-1.2£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=8.4£®
¡ày¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=-1.2x+8.4£»
£¨2£©z=x£¨8.4-1.2x£©=-1.2x2+6.4x£¬¡àx=2.67ʱ£¬ÄêÀûÈózÈ¡µ½×î´óÖµ£®
µãÆÀ ±¾Ì⿼²éÁËÇóÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÀûÓÃÏßÐԻع鷽³ÌÔ¤²âÉú²úÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²EµÄ×óÓÒ½¹µã£¬AΪ×󶥵㣬PΪÍÖÔ²EÉϵĵ㣬ÒÔPF1Ϊֱ¾¶µÄÔ²¾¹ýF2£¬Èô$|{P{F_2}}|=\frac{1}{4}|{A{F_2}}|$£¬ÔòÍÖÔ²EµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | $\frac{3}{4}$ |
19£®¶Ôa£¾0£¬b£¾0£¬a+b¡Ý2$\sqrt{ab}$£®Èôx+$\frac{1}{x}$¡Ý2$\sqrt{x•\frac{1}{x}}$£¬Ôòx+$\frac{1}{x}$¡Ý2£¬ÒÔÉÏÍÆÀí¹ý³ÌÖеĴíÎóΪ£¨¡¡¡¡£©
| A£® | ´óǰÌá | B£® | СǰÌá | C£® | ½áÂÛ | D£® | ÎÞ´íÎó |
3£®Èô¼¯ºÏA={x|x2+x-2£¼0}£¬¼¯ºÏ$B=\left\{{x|\frac{1}{x^2}£¾1}\right\}$£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A£® | £¨-1£¬2£© | B£® | £¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£© | C£® | £¨-1£¬1£© | D£® | £¨-1£¬0£©¡È£¨0£¬1£© |
4£®
ÒÑ֪ij¸ö¼¸ºÎÌåµÄÕýÊÓͼ¡¢²àÊÓͼ¡¢¸©ÊÓͼ¾ùΪÓÒͼµÄÐÎ×´£¬¸ù¾ÝͼÖбê³öµÄ³ß´ç£¨Í¼ÖдóÕý·½Ðα߳¤Îª2a£©£¬¿ÉµÃÕâ¸ö¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
| A£® | $\frac{20}{3}{a^3}$ | B£® | 7a3 | C£® | $2\sqrt{2}{a^3}$ | D£® | 5a3 |