题目内容

15.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,讨论函数y=f(x)的单调性;
(2)已知ω>0,函数$g(x)=f(\frac{ωx}{2}-\frac{π}{12})$,若函数g(x)在区间$[{-\frac{2π}{3},\frac{π}{6}}]$上是增函数,求ω的最大值.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦的定义域和值域求得f(x)的单调性.
(2)利用正弦函数的单调性、定义域和值域,求得ω的范围,可得ω的最大值.

解答 解:(1)$f(x)=\frac{{\sqrt{3}}}{2}sin2x+\frac{1+cos2x}{2}+\frac{3}{2}=sin({2x+\frac{π}{6}})+2$.
∵$x∈[{-\frac{π}{6},\frac{π}{3}}]$,∴$2x+\frac{π}{6}∈[{-\frac{π}{6},\frac{5π}{6}}]$,
所以,$-\frac{π}{6}≤2x+\frac{π}{6}≤\frac{π}{2}$,即$-\frac{π}{6}≤x≤\frac{π}{6}$时,y=f(x)增,
$\frac{π}{2}≤2x+\frac{π}{6}≤\frac{5π}{6}$,即$\frac{π}{6}≤x≤\frac{π}{3}$时,y=f(x)减,
∴函数y=f(x)在$[-\frac{π}{6},\frac{π}{6}]$上增,在$[\frac{π}{6},\frac{π}{3}]$上减.…(6分)
(2)$g(x)=sin(2(\frac{ωx}{2}-\frac{π}{12})+\frac{π}{6})+2$=sin(ωx)+2,
要使g(x)在$[-\frac{2π}{3},\frac{π}{6}]$上增,只需$-\frac{π}{2ω}≤-\frac{2π}{3}$,即$ω≤\frac{3}{4}$,
所以ω的最大值为$\frac{3}{4}$.…(12分)

点评 本题主要考查三角恒等变换,正弦函数的单调性、定义域和值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网