题目内容

8.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+x-3,则f(x)的零点个数为(  )
A.1B.2C.3D.4

分析 先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为判断两函数交点个数问题,最后根据奇函数的对称性确定答案.

解答 解:∵函数f(x)是定义域为R的奇函数,
∴f(0)=0,所以0是函数f(x)的一个零点,
当x>0时,令f(x)=2x+x-3=0,
则2x=-x+3,
分别画出函数y=2x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)有一个零点,

又根据对称性知,当x<0时函数f(x)也有一个零点.
综上所述,f(x)的零点个数为3个,
故选:C.

点评 本题是个基础题,函数的奇偶性是函数最重要的性质之一,同时函数的奇偶性往往会和其他函数的性质结合应用,此题就与函数的零点结合,符合高考题的特点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网