题目内容

20.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为(  )
A.(x-2)2+(y+1)2=2B.(x+2)2+(y-1)2=2C.(x-1)2+(y-2)2=2D.(x-2)2+(y-1)2=2

分析 由圆与x轴的交点A和B的坐标,根据垂径定理得到圆心在直线x=2上,又圆心在直线2x-3y-1=0上,联立两直线方程组成方程组,求出方程组的解集得到交点坐标即为圆心坐标,由求出的圆心坐标和A的坐标,利用两点间的距离公式求出圆心到A的距离即为圆的半径,由圆心和半径写出圆的方程即可.

解答 解:解:由题意得:圆心在直线x=2上,
又圆心在直线2x-3y-1=0上,
∴圆心M的坐标为(2,1),又A(1,0),
半径|AM|=$\sqrt{(2-1)^{2}+(1-0)^{2}}$=$\sqrt{2}$,
则圆的方程为(x-2)2+(y-1)2=2.
故选:D

点评 此题考查了圆的标准方程,涉及的知识有:两点间的距离公式,两直线的交点坐标,以及垂径定理,根据题意得出圆心在直线x=2上是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网