题目内容

设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7=
 
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:由a3+a4+a5=12,可得 a4=4,故有 a1+a2+…+a7=7a4,运算求得结果.
解答: 解:∵数列{an}是等差数列,a3+a4+a5=12,
∴3a4=12,
∴a4=4.
∴a1+a2+…+a7=7a4=28.
故答案为:28.
点评:本题主要考查等差数列的定义和性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网