题目内容
11.已知数列{an}的通项an=10n+5,n∈N *,其前n项和为Sn,令${T_n}=\frac{S_n}{{5•{2^n}}}$,若对一切正整数n,总有Tn≤m成立,则实数m的最小值是( )| A. | 4 | B. | 3 | C. | 2 | D. | 不存在 |
分析 数列{an}的通项an=10n+5,n∈N *,其前n项和为Sn=5n2+10n.可得${T_n}=\frac{S_n}{{5•{2^n}}}$=$\frac{{n}^{2}+2n}{{2}^{n}}$,作差Tn+1-Tn,利用其单调性即可得出.
解答 解:数列{an}的通项an=10n+5,n∈N *,
其前n项和为Sn=$\frac{n(15+10n+5)}{2}$=5n2+10n.
${T_n}=\frac{S_n}{{5•{2^n}}}$=$\frac{{n}^{2}+2n}{{2}^{n}}$,
Tn+1-Tn=$\frac{(n+1)^{2}+2(n+1)}{{2}^{n+1}}$-$\frac{{n}^{2}+2n}{{2}^{n}}$=$\frac{-{n}^{2}+3}{{2}^{n+1}}$,
可得:T1<T2>T3>T4>….
可得Tn的最大值为T2.
∵对一切正整数n,总有Tn≤m成立,则实数m≥T2=2.
∴m的最小值是2.
故选:C.
点评 本题考查了等差数列的通项公式与求和公式、数列递推关系、作差法、数列的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.设点P对应的复数为1+i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为( )
| A. | ($\sqrt{2}$,$\frac{π}{4}$) | B. | ($-\sqrt{2}$,$\frac{3}{4}π$) | C. | (1,$\frac{3}{4}π$) | D. | (-1,$\frac{π}{4}$) |
6.已知二次函数y=f(x)满足f(0)=3,f(1)=0且f(x+2)是偶函数.
(1)若f(x)在区间[2a,a+2]上不单调,求a的取值范围;
(2)若x∈[t,t+2],试求y=f(x)的最小值.
(1)若f(x)在区间[2a,a+2]上不单调,求a的取值范围;
(2)若x∈[t,t+2],试求y=f(x)的最小值.
3.计算:1+2i+3i2+4i3+5i4+…+100i99=( )(i是虚数单位)
| A. | 0 | B. | 1 | C. | -25-25i | D. | -50-50i |