题目内容
2.设函数f(x)=x2+bx+c(b,c∈R),若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,则b的取值范围是( )| A. | [0,2] | B. | (0,2] | C. | (-2,2) | D. | [-2,2] |
分析 若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,f(x)max-f(x)min≤4,结合二次函数的图象和性质分类讨论,可得实数b的取值范围.
解答 解:函数f(x)=x2+bx+c对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4恒成立,
即f(x)max-f(x)min≤4,
记f(x)max-f(x)min=M,则M≤4.
当|-$\frac{b}{2}$|>1,即|b|>2时,M=|f(1)-f(-1)|=|2b|>4,与M≤4矛盾;
当|-$\frac{b}{2}$|≤1,即|b|≤2时,M=max{f(1),f(-1)}-f(-$\frac{b}{2}$)
=$\frac{1}{2}$[f(1)+f(-1)+|f(1)-f(-1)]|-f(-$\frac{b}{2}$)=(1+$\frac{|b|}{2}$)2≤4,
解得:|b|≤2,
即-2≤b≤2,
综上,b的取值范围为-2≤b≤2.
故选:D
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
练习册系列答案
相关题目
16.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),点(4,-2)在它的一条渐近线上,则离心率等于( )
| A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
14.在空间中,下列命题正确的是( )
| A. | 如果平面α⊥平面β,任取直线m?α,那么必有m⊥β | |
| B. | 如果直线m∥平面α,直线n?α内,那么m∥n | |
| C. | 如果直线m∥平面α,直线n∥平面α,那么m∥n | |
| D. | 如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥α |
14.函数y=lnx-x的单调递减区间是( )
| A. | (1,+∞) | B. | (0,1) | C. | (0,1),(-∞,0) | D. | (1,+∞),(-∞,0) |
11.已知cos($\frac{5π}{12}$-θ)=$\frac{1}{3}$,则sin($\frac{π}{12}$+θ)的值是( )
| A. | -$\frac{1}{3}$ | B. | -$\frac{2\sqrt{2}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |