题目内容

1.已知函数f(x)=xex+ex(e为自然对数的底)
(1)求曲线y=f(x)在点(1,f(1))处的切线方程
(2)求y=f(x)的极小值点.

分析 (1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值点即可.

解答 解:(1)∵f(x)=xex+ex
∴f′(x)=(x+2)ex
而f(1)=2e,f′(1)=3e,
故切线方程是:y-2e=3e(x-1),
整理得:3ex-y-e=0;
(2)由(1)令f′(x)>0,解得:x>-2,
令f′(x)<0,解得:x<-2,
故f(x)在(-∞,-2)递减,在(-2,+∞)递增,
故x=-2是函数的极小值点.

点评 本题考查了切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网