题目内容
4.已知两组数A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,其中yi=2xi+3,(i=1,2,3,4,5,6,7),A组数的平均数与方差分别记为$\overline{x}$,SA2,B组数的平均数与方差分别记为$\overline{y}$,SB2,则下面关系式正确的是( )| A. | $\overline{y}$=2$\overline{x}$+3,sB2=2sB2+3 | B. | $\overline{y}$=2$\overline{x}$+3,sB2=4sA2 | ||
| C. | $\overline{y}$=2$\overline{x}$,sB2=4sA2 | D. | $\overline{y}$=2$\overline{x}$,sB2=4sA2+3 |
分析 利用平均数和方差的性质直接求解.
解答 解:∵两组数A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,
其中yi=2xi+3,(i=1,2,3,4,5,6,7),A组数的平均数与方差分别记为$\overline{x}$,SA2,
B组数的平均数与方差分别记为$\overline{y}$,SB2,
∴$\overline{y}$=2$\overline{x}$+3,sB2=4sA2.
故选:B.
点评 本题考查平均数、方差的求法,是基础题,解题时要认真审题,注意方差、平均数的性质的合理运用.
练习册系列答案
相关题目
15.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至11月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x元和销售量y件之间的一组数据如表所示:
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.
| 月份 | 7 | 8 | 9 | 10 | 11 |
| 销售单价x元 | 9 | 9.5 | 10 | 10.5 | 11 |
| 销售量y件 | 11 | 10 | 8 | 6 | 5 |
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.
9.已知角θ的终边过点(2,3),则tan($\frac{11π}{4}$+θ)=( )
| A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |