题目内容
16.已知点O为△ABC外接圆的圆心,且$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\vec 0$,则△ABC的内角A等于( )| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 由已知向量等式可得O为三角形ABC的重心,结合O又是三角形外接圆的圆心,可得三角形ABC为正三角形,则角A可求.
解答 解:由$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\vec 0$,得$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,可知,O为△ABC的重心,![]()
延长AO交BC于D,则D为BC的中点,
又O为△ABC外接圆的圆心,可得AD⊥BC,则AB=AC,
同理可得AB=BC,则△ABC为正三角形,
∴∠A=60°.
故选:C.
点评 本题考查向量加减混合运算及其几何意义,考查三角形重心及外接圆的圆心的性质,是中档题.
练习册系列答案
相关题目
6.函数f(x)=(x3-3x)sinx的大致图象是( )
| A. | B. | C. | D. |
7.已知a,b∈R,i为虚数单位,且a-3i=2+bi,则复数z=a+bi在复平面上对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
4.已知两组数A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,其中yi=2xi+3,(i=1,2,3,4,5,6,7),A组数的平均数与方差分别记为$\overline{x}$,SA2,B组数的平均数与方差分别记为$\overline{y}$,SB2,则下面关系式正确的是( )
| A. | $\overline{y}$=2$\overline{x}$+3,sB2=2sB2+3 | B. | $\overline{y}$=2$\overline{x}$+3,sB2=4sA2 | ||
| C. | $\overline{y}$=2$\overline{x}$,sB2=4sA2 | D. | $\overline{y}$=2$\overline{x}$,sB2=4sA2+3 |
11.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F作倾斜角为α的直线交椭圆x轴上方于一点P,其中α∈[$\frac{2π}{3}$,$\frac{5π}{6}$],$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$),|$\overrightarrow{OQ}$|=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆离心率的最大值为( )
| A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1-$\frac{\sqrt{2}}{2}$ |
8.抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{7}$ | D. | $\frac{4}{5}$ |