题目内容

已知C
 
1006
2013
+C
 
1007
2013
=C
 
n
2
n
,(2x-3)n=a0+a1(x-1)+…an(x-1)n,x∈R,n∈N,则
a1
2
+
a2
22
+…+
an
2n
的值为
 
考点:二项式系数的性质
专题:二项式定理
分析:由条件求得n=10,a0=1,在所给的等式中,令x=1+
1
2
,可得1+
a1
2
+
a2
22
+…+
an
2n
=0,从而求得
a1
2
+
a2
22
+…+
an
2n
的值.
解答: 解:∵C
 
1006
2013
+C
 
1007
2013
=C
 
n
2
n
=
C
1007
2014
,∴n=2014.
∵(2x-3)n=(2x-3)2014 =[-1+2(x-1)]2014=a0+a1(x-1)1+…an(x-1)n,x∈R,n∈N,∴a0=1.
在[-1+2(x-1)]2014=a0+a1(x-1)1+…an(x-1)n中,令x=1+
1
2
,可得
1+
a1
2
+
a2
22
+…+
an
2n
=0,∴
a1
2
+
a2
22
+…+
an
2n
=-1,
故答案为:-1.
点评:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网