题目内容
由x轴和y=2x2-x所围成的图形的面积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:定积分
专题:导数的概念及应用
分析:先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=2x2-x与直线y=0围成的封闭图形的面积,即可求得结论.
解答:
解:由曲线y=2x2-x和直线y=0,可得x=0,或x=
∴曲线y=2x2-x和直线y=0所围成的封闭图形的面积为
(x-2x2)dx.
故选:C
| 1 |
| 2 |
∴曲线y=2x2-x和直线y=0所围成的封闭图形的面积为
| ∫ |
0 |
故选:C
点评:本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.
练习册系列答案
相关题目
定义在R上的可导函数f(x)满足f(x+2)-f(x)=2f(1),y=f(x+1)的图象关于直线x=-1对称,且当x∈[2,4]时,f(x)=x2+2xf′(2),则f(-
)与f(
)的大小关系是( )
| 1 |
| 2 |
| 16 |
| 3 |
A、f(-
| ||||
B、f(-
| ||||
C、f(-
| ||||
| D、不确定 |
将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为
( )
( )
A、
| ||
B、
| ||
C、
| ||
D、
|
要得到y=sin(2x-
)的图象,需要将函数y=sin(2x+
)的图象( )
| π |
| 3 |
| π |
| 3 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
已知向量
=(2,1),
=(1,m),且
∥
,则m等于( )
| a |
| b |
| a |
| b |
| A、2 | ||
B、
| ||
| C、-2 | ||
D、-
|
设等差数列{an}{bn}的前n项和为Sn,Tn,若
=
,则
=( )
| Sn |
| Tn |
| n |
| n+1 |
| a5 |
| b7 |
A、
| ||
B、
| ||
C、
| ||
D、
|
设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标可能为( )
A、(3,
| ||||
B、(3,
| ||||
C、(3
| ||||
D、(3
|