题目内容
16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,P为双曲线C上一点,Q为双曲线C渐近线上一点,P,Q均位于第一象限,且$\widehat{QP}$=$\widehat{P{F}_{2}}$,$\widehat{Q{F}_{1}}$•$\widehat{Q{F}_{2}}$=0,则双曲线C的离心率为( )| A. | $\sqrt{5}$-1 | B. | $\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | $\sqrt{5}$+1 |
分析 利用已知条件可得P是Q,F2的中点,$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,由条件求出Q坐标,由中点坐标公式,求出P的坐标,代入双曲线方程,即可求解双曲线的离心率.
解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),
P为双曲线C上一点,Q为双曲线C渐近线上一点,P、Q均位于第一象限,
且$\widehat{QP}$=$\widehat{P{F}_{2}}$,$\widehat{Q{F}_{1}}$•$\widehat{Q{F}_{2}}$=0,
可知P是Q,F2的中点,$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,
Q在直线bx-ay=0上,并且|OQ|=c,则Q(a,b),
则P($\frac{a+c}{2}$,$\frac{b}{2}$),
代入双曲线方程可得:$\frac{(a+c)^{2}}{4{a}^{2}}$-$\frac{{b}^{2}}{4{b}^{2}}$=1,
即有$\frac{a+c}{a}$=$\sqrt{5}$,
即1+e=$\sqrt{5}$.
可得e=$\sqrt{5}$-1.
故选:A.
点评 本题考查双曲线的简单性质的应用,离心率的求法,考查转化思想以及计算能力,属于中档题.
练习册系列答案
相关题目
7.已知集合A={x|x2-2x-15<0},B={x|0<x<7},则A∪B等于( )
| A. | [-5,7) | B. | [-3,7) | C. | (-3,7) | D. | (-5,7) |
4.已知三个向量$\overrightarrow a=({3,3,2}),\overrightarrow b=(6,x,7),\overrightarrow c=({0,5,1})$共面,则x的值为( )
| A. | 3 | B. | -9 | C. | 22 | D. | 21 |
1.已知命题p:?x∈N*,2x>x2,则¬p是( )
| A. | ?x∈N*,2x>x2 | B. | ?x∈N*,2x≤x2 | C. | ?x∈N*,2x≤x2 | D. | ?x∈N*,2x<x2 |