题目内容

已知数列{an},{bn}各项均为正数,且对任意n∈N*,都有an,bn,a n+1成等差数列,bn,a n+1,b n+1成等比数列,且a1=10,a2=15,求证:{
bn
}为等差数列并求出{an},{bn}的通项公式.
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:由已知得an+12=bn•bn+1,(n∈N*),从而an=
bnbn-1
,(n≥2),由an,bn,an+1成等差数列,得2
bn
=
bn-1
+
bn+1
,(n≥2),由此能证明数列{
bn
}是等差数列.由a1=10,a2=15,得
b1
=
5
2
2
,从而bn=(2
2
+
2
n
2
2=
n2
2
+4n+8,(n≥2),由此能求出bn=
n2
2
+4n+8,(n∈N*),an=
1
2
n2+
7
2
n+6.(n∈N*).
解答: 证明:∵bn,a n+1,b n+1成等比数列,
∴an+12=bn•bn+1,(n∈N*
∴an+1=
bnbn+1

∴an=
bnbn-1
,(n≥2)
∵an,bn,an+1成等差数列,
∴2bn=an+an+1,(n∈N*
∴2bn=
bn×bn-1
+
bn×bn+1
=
bn
bn-1
+
bn+1
),(n≥2)
2
bn
=
bn-1
+
bn+1
,(n≥2)
∴数列{
bn
}是等差数列.
∵a1=10,a2=15,∴2b1=a1+a2=25,b1=
25
2
b1
=
5
2
2

∵an=
bn-1bn
,(n≥2),
∴a2=
b1
b2
b2
=
a2
b1
=3
2

∴d=
b2
-
b1
=
2
2
,∴
bn
=
5
2
2
+
(n-1)•
2
2
=2
2
+
2
2
n

∴bn=(2
2
+
2
n
2
2=
n2
2
+4n+8,(n≥2)
当n=1时,解得b1=
25
2
,∴bn=
n2
2
+4n+8,(n∈N*
an=
bn
bn-1=
(2
2
+
2
n
2
)2[2
2
+
2
(n-1)
2
)2

=(2
2
+
2
n
2
)(2
2
+
2
(n-1)
2

=8+2n+2(n-1)+
1
2
n(n-1)
=
1
2
n2+
7
2
n+6.(n≥2)
当n=1时,解得a1=10,满足条件,
∴an=
1
2
n2+
7
2
n+6.(n∈N*
点评:本题考查等差数列的证明,考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网