题目内容

7.设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点,若$\overrightarrow{ED}$=6$\overrightarrow{DF}$,则所有k的值为$\frac{2}{3}$或$\frac{3}{8}$.

分析 依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据$\overrightarrow{ED}$=6$\overrightarrow{DF}$求得x0的表达式,由D在AB上知x0+2kx0=2,进而求得x0的另一个表达式,两个表达式相等即可求得k.

解答 解:依题设得椭圆的方程为$\frac{{x}^{2}}{4}$+y2=1,
直线AB,EF的方程分别为x+2y=2,y=kx(k>0).
设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2
且x1,x2满足方程(1+4k2)x2=4,故x2=-x1=$\frac{2}{\sqrt{1+4{k}^{2}}}$,
由$\overrightarrow{ED}$=6$\overrightarrow{DF}$知x0-x1=6(x2-x0),得x0=$\frac{1}{7}$(6x2+x1)=$\frac{5}{7}$x2=$\frac{10}{7\sqrt{1+4{k}^{2}}}$,
由D在AB上知x0+2kx0=2,得x0=$\frac{2}{1+2k}$.所以$\frac{2}{1+2k}$=$\frac{10}{7\sqrt{1+4{k}^{2}}}$,
化简得24k2-25k+6=0,解得k=$\frac{2}{3}$或k=$\frac{3}{8}$.
故答案为:$\frac{2}{3}$或$\frac{3}{8}$.

点评 本题考查椭圆的方程和性质,同时考查直线和椭圆联立,求交点,以及向量共线的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网