题目内容
已知数列{an}的首项a1=
,前n项和为Sn,且满足2an+1+Sn=3(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求满足
<
<
的所有n的和.
| 3 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求满足
| 18 |
| 17 |
| S2n |
| Sn |
| 8 |
| 7 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列,不等式的解法及应用
分析:(Ⅰ)在已知的数列递推式中取n=n-1得另一递推式,两式作差后即可得到数列{an}的首项a1=
,公比为
的等比数列,由等比数列的通项公式得答案;
(Ⅱ)将an=
•(
)n-1代入2an+1+Sn=3,求得Sn=3-3•(
)n,进一步得到S2n,代入
后由
<1+(
)n<
得
<(
)n<
,求解指数不等式可得正整数n的值,则答案可求.
| 3 |
| 2 |
| 1 |
| 2 |
(Ⅱ)将an=
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| S2n |
| Sn |
| 18 |
| 17 |
| 1 |
| 2 |
| 8 |
| 7 |
| 1 |
| 17 |
| 1 |
| 2 |
| 1 |
| 7 |
解答:
解:(Ⅰ)由2an+1+Sn=3,得2an+Sn-1=3(n≥2),
两式相减得:2an+1-2an+an=0,即an+1=
an(n≥2).
又a1=
,a2=
=
符合上式,
∴数列{an}的首项a1=
,公比为
的等比数列,
则an=
•(
)n-1;
(Ⅱ)将an=
•(
)n-1代入2an+1+Sn=3,得Sn=3-3•(
)n,
故S2n=3-3•(
)2n=3-3•[(
)n]2.
∴
=
=1+(
)n.
故由
<1+(
)n<
得
<(
)n<
.
又n为正整数,∴n=3或n=4.
∴满足
<
<
的所有n的和为7.
两式相减得:2an+1-2an+an=0,即an+1=
| 1 |
| 2 |
又a1=
| 3 |
| 2 |
| 3-a1 |
| 2 |
| 3 |
| 4 |
∴数列{an}的首项a1=
| 3 |
| 2 |
| 1 |
| 2 |
则an=
| 3 |
| 2 |
| 1 |
| 2 |
(Ⅱ)将an=
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故S2n=3-3•(
| 1 |
| 2 |
| 1 |
| 2 |
∴
| S2n |
| Sn |
3-3[(
| ||
3-3•(
|
| 1 |
| 2 |
故由
| 18 |
| 17 |
| 1 |
| 2 |
| 8 |
| 7 |
| 1 |
| 17 |
| 1 |
| 2 |
| 1 |
| 7 |
又n为正整数,∴n=3或n=4.
∴满足
| 18 |
| 17 |
| S2n |
| Sn |
| 8 |
| 7 |
点评:本题考查了数列递推式,考查了等比关系的确定,考查了指数不等式的解法,是中档题.
练习册系列答案
相关题目
圆x2+y2-4x=0在点P(1,
)处的切线方程是( )
| 3 |
A、x+
| ||
B、x-
| ||
C、x-
| ||
D、x+
|