题目内容
设函数f(x)=1+
,(x>0).
(1)数列{an}满足a1=1,an+1=
,(n∈N+),求数列{an}的通项公式及数列{2n•an•an+1}的前n项和;
(2)设函数g(x)=
(x2+1)•[f(x)-1],试比较[g(x)]n+2与g(xn)+2n(n∈N+)的大小,并说明理由.
| 2 |
| x |
(1)数列{an}满足a1=1,an+1=
| 1 |
| f(an) |
(2)设函数g(x)=
| 1 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)首先判断出数列{
+1}是以1+
为首项公比2的等比数列,进而求出数列{an}的通项公式;然后求出数列{2n•an•an+1}的通项公式,进而求出它的前n项和;
(2)求出[g(x)]n+2与g(xn)+2n的差,判断出它大于或等于0,比较出[g(x)]n+2与g(xn)+2n(n∈N+)的大小即可.
| 1 |
| an |
| 1 |
| a1 |
(2)求出[g(x)]n+2与g(xn)+2n的差,判断出它大于或等于0,比较出[g(x)]n+2与g(xn)+2n(n∈N+)的大小即可.
解答:
解:(1)由题设可知:an+1=
=
=
,
变形可得
=1+
,∴(
+1)=2(
+1),
∴数列{
+1}是以1+
为首项公比2的等比数列,
则
+1=2n-1(
+1)=2n,
∴an=
,
设bn=2n•an•an+1=2n•
•
=
-
,
设Sn为{bn}的前n项和,
则Sn=b1+b2+…+bn=
-
+
-
+…+
-
=1-
=
(2)g(x)=
(x2+1)•
=x+
,
则[g(x)]n+2-(g(xn)+2n)=(x+
)n+2-[(xn+
)+2n]=
xn-1•
+
xn-2•
+…+
x•
+2-2n=
((
xn-1•
+
x•
)+(
xn-2•
+
x2•
)+…+(
xn-1•
+
x•
))+2-2n≥
+
+…+
+2-2n≥2n-2+2-2n=0,
∴[g(x)]n+2≥[g(xn)]+2n.
| 1 |
| f(an) |
| 1 | ||
1+
|
| an |
| 2+an |
变形可得
| 1 |
| an+1 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
则
| 1 |
| an |
| 1 |
| a1 |
∴an=
| 1 |
| 2n-1 |
设bn=2n•an•an+1=2n•
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
设Sn为{bn}的前n项和,
则Sn=b1+b2+…+bn=
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n+1-1 |
| 2n+1-2 |
| 2n+1-1 |
(2)g(x)=
| 1 |
| 2 |
| 2 |
| x |
| 1 |
| x |
则[g(x)]n+2-(g(xn)+2n)=(x+
| 1 |
| x |
| 1 |
| xn |
| C | 1 n |
| 1 |
| x |
| C | 2 n |
| 1 |
| x2 |
| C | n-1 n |
| 1 |
| xn-1 |
| 1 |
| 2 |
| C | 1 n |
| 1 |
| x |
| C | n-1 n |
| 1 |
| xn-1 |
| C | 2 n |
| 1 |
| x2 |
| C | n-2 n |
| 1 |
| xn-2 |
| C | 1 n |
| 1 |
| x |
| C | n-1 n |
| 1 |
| xn-1 |
| C | 1 n |
| C | 2 n |
| C | n-1 n |
∴[g(x)]n+2≥[g(xn)]+2n.
点评:本题主要考查了求数列的通项公式的方法,考查了数列的求和,考查了学生的运算求解能力,属于中档题.
练习册系列答案
相关题目