题目内容
等差数列{an}是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,S5=a52.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
,求数列{bn}的前n项的和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
| n2+n+1 |
| an•an+1 |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的通项公式、前n项和公式和等比数列性质,求出首项和公差,由此能求出
数列{an}的通项公式.
(Ⅱ)由已知条件推导出bn=
(1+
-
),由此利用裂项求和法能求出数列{bn}的前n项的和.
数列{an}的通项公式.
(Ⅱ)由已知条件推导出bn=
| 25 |
| 9 |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(Ⅰ)设{an}的公差为d,(d>0)
∵a1,a3,a9成等比数列,
∴(a1+2d)2=a1(a1+8d),
整理,得d2=a1d,
∵d≠0,∴a1=d,①
∵S5=a52,∴5a1+
•d=(a1+4d)2,②
由①②,得:a1=
,d=
,
∴an=
+(n-1)×
=
n.
(Ⅱ)bn=
=
=
•
=
(1+
-
),
∴b1+b2+…+bn
=
[n+(1-
)+(
-
)+…+(
-
)]
=
(n+1-
)
=
•
.
∵a1,a3,a9成等比数列,
∴(a1+2d)2=a1(a1+8d),
整理,得d2=a1d,
∵d≠0,∴a1=d,①
∵S5=a52,∴5a1+
| 5×4 |
| 2 |
由①②,得:a1=
| 3 |
| 5 |
| 3 |
| 5 |
∴an=
| 3 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
(Ⅱ)bn=
| n2+n+1 |
| an•an+1 |
| n2+n+1 | ||||
|
=
| 25 |
| 9 |
| n2+n+1 |
| n(n+1) |
| 25 |
| 9 |
| 1 |
| n |
| 1 |
| n+1 |
∴b1+b2+…+bn
=
| 25 |
| 9 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 25 |
| 9 |
| 1 |
| n+1 |
=
| 25 |
| 9 |
| n2+2n |
| n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目