题目内容
6.(1)求图中物理成绩的众数及a的值;
(2)根据频率分布直方图,估计这100名学生物理成绩的平均分和中位数(中位数要求精确到小数点后一位).
分析 (1)频率最大的组中值,即为众数,各组的累积频率为1,可得a的值;
(2)累加各组组中值与频率的乘积可估得平均分,均为图中矩形面积,可估得中位数.
解答 解:(1)众数是65…(2分)
依题意得,10(2a+0.02+0.03+0.04)=1,
解得a=0.005…(4分)
(2)这100名学生物理成绩的平均分为:
55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分)…(7分)
设中位数为70+x分,则由0.005×10+0.04×10+0.03x=0.5
解得$x=\frac{5}{3}≈1.7$,所以这100名学生物理成绩的中位数约为71.7.…(10分)
点评 本题考查的知识点是频率分布直方图,众数,中位数,平均数的计算,难度不大,属于基础题.
练习册系列答案
相关题目
3.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,若从这6名教师中任选2名,选出的2名教师来自同一学校的概率为( )
| A. | $\frac{5}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
17.设等差数列{an}的前n项和为Sn,已知a1+a2+a3=a4+a5,S5=60,则a10=( )
| A. | 16 | B. | 20 | C. | 24 | D. | 26 |
1.
根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表
(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
| 组别 | PM2.5浓度 (微克/立方米) | 频数(天) | 频率 |
| 第一组 | (0,25] | 3 | 0.15 |
| 第二组 | (25,50] | 12 | 0.6 |
| 第三组 | (50,75] | 3 | 0.15 |
| 第四组 | (75,100] | 2 | 0.1 |
(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
11.
某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
(Ⅰ)写出其中的a、b及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求这2人中没有第3组人的概率.
(Ⅰ)写出其中的a、b及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求这2人中没有第3组人的概率.
| 组号 | 分组 | 喜爱人数 | 喜爱人数 占本组的频率 |
| 第1组 | [15,25) | a | 0.10 |
| 第2组 | [25,35) | b | 0.20 |
| 第3组 | [35,45) | 6 | 0.20 |
| 第4组 | [45,55) | 12 | 0.60 |
| 第5组 | [55,65] | 20 | 0.40 |
16.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与抛物线$y=\frac{1}{2}{x^2}+2$相切,则该双曲线的离心率为( )
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |