题目内容
1.设集合A={x|(x+1)(4-x)>0},B={x|0<$\sqrt{x}$<3},则A∩B等于( )| A. | (0,4) | B. | (4,9) | C. | (-1,4) | D. | (-1,9) |
分析 求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.
解答 解:由A中不等式变形得:(x+1)(x-4)<0,
解得:-1<x<4,即A=(-1,4),
由B中不等式解得:0<x<9,即B=(0,9),
则A∩B=(0,4),
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
12.若实数x,y满足$\left\{\begin{array}{l}{x-2y+3≥0}\\{y≥x}\\{x≥1}\end{array}\right.$,则z=$\sqrt{{x}^{2}+{y}^{2}}$的最小值为( )
| A. | 3 | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
9.已知正数a,b满足a+b=4,则曲线f(x)=lnx+$\frac{x}{b}$在点(a,f(a))处的切线的倾斜角的取值范围为( )
| A. | [$\frac{π}{4}$,+∞) | B. | [$\frac{π}{4}$,$\frac{5π}{12}$) | C. | [$\frac{π}{4}$,$\frac{π}{2}$) | D. | [$\frac{π}{4}$,$\frac{π}{3}$) |
13.函数y=2cos(ωx+ϕ)(ω>0且|ϕ|<$\frac{π}{2}$),在区间$[{-\frac{π}{3},\frac{π}{6}}]$上单调递增,且函数值从-2增大到2,那么此函数图象与y轴交点的纵坐标为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{6}+\sqrt{2}}}{2}$ |
11.下列语句为命题的是( )
| A. | lg100=2 | B. | 20172017是一个大数 | ||
| C. | 三角函数的图象真漂亮! | D. | 指数函数是递增函数吗? |