题目内容

16.已知向量$\overrightarrow{AB}$=(m,1),$\overrightarrow{BC}$=(2-m,-4),若$\overrightarrow{AB}$•$\overrightarrow{AC}$>11,则m的取值范围为(7,+∞).

分析 根据平面向量的坐标运算与数量积运算,列出不等式求出m的取值范围.

解答 解:向量$\overrightarrow{AB}$=(m,1),$\overrightarrow{BC}$=(2-m,-4),
∴$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=(2,-3),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=2m-3>11,
解得m>7;
∴m的取值范围是(7,+∞).
故答案为:(7,+∞).

点评 本题考查了平面向量是坐标表示与数量积运算问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网