题目内容

若数列{an}满足点(
1
an
1
an+1
)(n∈N*)在函数f(x)=x+2n的图象上,且a1=4.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)求证:
4
3
a1a2
+
a2a3
+…+
anan+1
<2.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由题意得
1
an+1
-
1
an
=2n,利用累加法求得通项公式;
(Ⅱ)由(Ⅰ)得
anan+1
=
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
),利用裂项法求和,放缩即得结论.
解答: 解:(Ⅰ)由题意得
1
an+1
=
1
an
+2n,
1
an+1
-
1
an
=2n,
1
an
-
1
an-1
=2(n-1),…
1
a3
-
1
a2
=2×2,
1
a2
-
1
a1
=2×1,
∴累加得
1
an
-
1
a1
=n2-n,即
1
an
=
1
a1
+n2-n,又a1=4,
∴an=
4
(2n-1)2

(Ⅱ)由(Ⅰ)得
anan+1
=
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
),
a1a2
+
a2a3
+…+
anan+1
=2(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=2(1-
1
2n+1
)=
4n
2n+1
4n
2n
=2
4n
2n+1
4n
2n+n
=
4
3

4
3
a1a2
+
a2a3
+…+
anan+1
<2.
点评:本题主要考查数列通项公式的求法累加法及数列求和的裂项法,考查学生的运算能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网