题目内容

对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为(  )
A、1B、2C、3D、4
考点:绝对值三角不等式,函数最值的应用
专题:不等式的解法及应用
分析:把表达式分成2组,利用绝对值三角不等式求解即可得到最小值.
解答: 解:对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|
=|x-1|+|-x|+|1-y|+|y+1|
≥|x-1-x|+|1-y+y+1|=3,
当且仅当x∈[0,
1
2
],y∈[0,1]成立.
故选:C.
点评:本题考查绝对值三角不等式的应用,考查利用分段函数或特殊值求解不等式的最值的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网