ÌâÄ¿ÄÚÈÝ
2£®ÔÚ¡÷ABCÖУ¬ÓÐÕýÏÒ¶¨Àí£º$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=¶¨Öµ£¬Õâ¸ö¶¨Öµ¾ÍÊÇ¡÷ABCµÄÍâ½ÓÔ²µÄÖ±¾¶£®Èçͼ2Ëùʾ£¬¡÷DEFÖУ¬ÒÑÖªDE=DF£¬µãMÔÚÖ±ÏßEFÉÏ´Ó×óµ½ÓÒÔ˶¯£¨µãM²»ÓëE¡¢FÖØºÏ£©£¬¶ÔÓÚMµÄÿһ¸öλÖ㬼ǡ÷DEMµÄÍâ½ÓÔ²Ãæ»ýÓë¡÷DMFµÄÍâ½ÓÔ²Ãæ»ýµÄ±ÈֵΪ¦Ë£¬ÄÇô£¨¡¡¡¡£©| A£® | ¦ËÏȱäСÔÙ±ä´ó | |
| B£® | ½öµ±MΪÏß¶ÎEFµÄÖеãʱ£¬¦ËÈ¡µÃ×î´óÖµ | |
| C£® | ¦ËÏȱä´óÔÙ±äС | |
| D£® | ¦ËÊÇÒ»¸ö¶¨Öµ |
·ÖÎö Éè¡÷DEMµÄÍâ½ÓÔ²°ë¾¶ÎªR1£¬¡÷DMFµÄÍâ½ÓÔ²°ë¾¶ÎªR2£¬ÔòÓÉÌâÒ⣬$\frac{{¦ÐR}_{1}^{2}}{¦Ð{R}_{2}^{2}}$=¦Ë£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£ºR1=$\frac{1}{2}$$\frac{DE}{sin¡ÏDME}$£¬R2=$\frac{1}{2}$$\frac{DF}{sin¡ÏDMF}$£¬½áºÏDE=DF£¬sin¡ÏDME=sin¡ÏDMF£¬¿ÉµÃ¦Ë=1£¬¼´¿ÉµÃ½â£®
½â´ð ½â£ºÉè¡÷DEMµÄÍâ½ÓÔ²°ë¾¶ÎªR1£¬¡÷DMFµÄÍâ½ÓÔ²°ë¾¶ÎªR2£¬
ÔòÓÉÌâÒ⣬$\frac{{¦ÐR}_{1}^{2}}{¦Ð{R}_{2}^{2}}$=¦Ë£¬
µãMÔÚÖ±ÏßEFÉÏ´Ó×óµ½ÓÒÔ˶¯£¨µãM²»ÓëE¡¢FÖØºÏ£©£¬
¶ÔÓÚMµÄÿһ¸öλÖã¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£ºR1=$\frac{1}{2}$$\frac{DE}{sin¡ÏDME}$£¬R2=$\frac{1}{2}$$\frac{DF}{sin¡ÏDMF}$£¬
ÓÖDE=DF£¬sin¡ÏDME=sin¡ÏDMF£¬
¿ÉµÃ£ºR1=R2£¬
¿ÉµÃ£º¦Ë=1£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÕýÏÒ¶¨ÀíÔÚ½âÈý½ÇÐÎÖеÄÓ¦Ó㬿¼²éÁË·ÖÀàÌÖÂÛ˼ÏëºÍת»¯Ë¼ÏëµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÒÑÖªº¯Êýf£¨x£©$\left\{\begin{array}{l}{{a}^{x}-2a£¬x£¾0}\\{-4ax+a£¬x¡Ü0}\end{array}\right.$£¬ÆäÖÐa£¾0£¬ÇÒa¡Ù1£¬Èôf£¨x£©ÔÚRÉϵ¥µ÷£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬$\frac{1}{3}$] | B£® | [$\frac{1}{3}$£¬1£© | C£® | £¨0£¬$\frac{1}{2}$] | D£® | [$\frac{1}{2}$£¬1£© |
13£®ÒÑÖª·ÇÁãʵÊýa£¬bÂú×ãa£¼b£¬ÔòÏÂÁв»µÈʽÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | a+b£¾0 | B£® | $\frac{1}{a}£¾\frac{1}{b}$ | C£® | ab£¼b2 | D£® | a3-b3£¼0 |
14£®Éè$a={3^{0.2}}£¬b={log_¦Ð}3£¬c={log_3}cos\frac{{\sqrt{2}}}{4}¦Ð$£¬Ôòa£¬b£¬c¹ØÏµÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | b£¾a£¾c | B£® | a£¾b£¾c | C£® | b£¾c£¾a | D£® | c£¾b£¾a |