题目内容

14.已知函数f(x)=x-alnx-1(a∈R)
(1)求函数f(x)的单调区间;
(2)当x≥2时,f(x)>0恒成立,求实数a的取值范围.

分析 (1)正确求得函数的导函数是关键,再求得导函数后,利用f'(x)>0,解自变量的取值范围时要对参数a进行讨论,由f′(x)以及x>0,可分a≤0和a>0来讨论得解.
(2)由f(x)≥0对x∈[2,+∞)上恒成立可分a≤2和a>2来讨论转化为函数的最小值大于等于0的问题来求解.

解答 解:(1)f′(x)=1-$\frac{a}{x}$=$\frac{x-a}{x}$(x>0),
当a≤0时,f'(x)>0,在(0,+∞)上为增函数,
当a>0时,令f′(x)=$\frac{x-a}{x}$=0,解得:x=a,
f(x)在(0,a)上为减函数,在(a,+∞)上为增函数;
(2)f′(x)=1-$\frac{a}{x}$=$\frac{x-a}{x}$,
当a≤2时,f'(x)≥0在[2,+∞)上恒成立,
则f(x)是单调递增的,
则f(x)>f(2)>f(1)=0恒成立,则a≤2,
当a>2时,在(2,a)上单调递减,在(a,+∞)上单调递增,
所以x∈(2,a)时,f(x)<f(2)<f(1)=0这与f(x)≥0恒成立矛盾,
故不成立
综上:a≤2.

点评 本题考查函数的导数以及利用到输球函数的单调区间和极值问题;考查了利用函数的导数讨论含参数不等式的恒成立问题,求参数的取值范围,主要转化为函数的最值问题利用导数这一工具来求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网