题目内容

1.若实数x,y满足$\left\{\begin{array}{l}3x-y-9≥0\\ x-y-3≤0\\ y≤3\end{array}\right.$,则使得z=y-2x取得最大值的最优解为(  )
A.(3,0)B.(3,3)C.(4,3)D.(6,3)

分析 作出不等式组对应的平面区域,利用数形结合即可得到结论.

解答 解:由z=y-2x,得y=2x+z,
作出不等式对应的可行域,
平移直线y=2x+z,
由平移可知当直线y=2x+z经过点A时,
直线y=2x+z的截距最小,此时z取得最值,
由$\left\{\begin{array}{l}{y=3}\\{3x-y-9=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,
即A(4,3),
即z=y-2x取得最大值的最优解为(4,3).
故选:C

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网