题目内容
12.P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为( )| A. | $\frac{2\sqrt{2}}{3}$+1 | B. | 2$\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{2}$+3 |
分析 P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,可得$\frac{m}{3}+\frac{n}{3}$=1.(m,n>0).再利用“乘1法”与基本不等式的性质即可得出.
解答 解:∵P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴$\frac{m}{3}+\frac{n}{3}$=1.(m,n>0).
则$\frac{1}{m}$+$\frac{2}{n}$=$\frac{1}{3}$(m+n)$(\frac{1}{m}+\frac{2}{n})$=$\frac{1}{3}(3+\frac{n}{m}+\frac{2m}{n})$$≥\frac{1}{3}(3+2\sqrt{\frac{n}{m}•\frac{2m}{n}})$=$\frac{1}{3}(3+2\sqrt{2})$,当且仅当n=$\sqrt{2}$m=6-3$\sqrt{2}$时取等号.
故选:A.
点评 本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
3.已知1<m<4,F1,F2为曲线$C:\frac{x^2}{4}+\frac{y^2}{4-m}=1$的左、右焦点,点P为曲线C与曲线$E:{x^2}-\frac{y^2}{m-1}=1$在第一象限的交点,直线l为曲线C在点P处的切线,若三角形F1PF2的内心为点M,直线F1M与直线l交于N点,则点M,N横坐标之和为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 随m的变化而变化 |
7.已知集合A={x|y=$\sqrt{x-2}$},B={x|x2-4<0},则A∪B=( )
| A. | ∅ | B. | (2,+∞) | C. | (-2,+∞) | D. | [0,2) |
1.已知实数a>0,b>0,若2a+b=1,则$\frac{1}{a}+\frac{2}{b}$的最小值是( )
| A. | $\frac{8}{3}$ | B. | $\frac{11}{3}$ | C. | 4 | D. | 8 |
2.曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1与曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1的( )
| A. | 实轴长相等 | B. | 离心率相等 | C. | 范围相同 | D. | 渐近线相同 |