题目内容

已知函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x-1)是奇函数,若f(-0.5)=9,则f(2012)+f(2014)+f(2.5)+f(1.5)等于(  )
A、-18B、-9C、0D、9
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数的奇偶性之间的关系,推导出函数是周期函数,利用函数的周期性即可进行求值.
解答: 解:∵f(x)是偶函数,f(x-1)是奇函数,
∴f(-x)=f(x),f(-x-1)=-f(x-1)=f(x+1),
∴f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),
即函数f(x)的周期是4,
∴f(2012)+f(2014)+f(2.5)+f(1.5)=f(0)+f(2)+f(-1.5)+f(1.5)=f(0)+f(2)+2f(1.5),
当x=0时,f(2)=-f(0),
即f(0)+f(2)=0,
当x=-0.5,f(-0.5+2)=-f(0.5)=-9,
即f(1.5)=-9,
∴f(2012)+f(2014)+f(2.5)+f(1.5)=f(0)+f(2)+2f(1.5)=0-9×2=-18.
故选:A
点评:本题主要考查函数值的计算,利用条件推导函数是周期函数是解决本题的关键.综合考查函数性质的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网