题目内容

如图,A、B两点都在河的对岸(不可到达),某人想测量A、B之间的距离,但只有卷尺和测角仪两种工具,若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,且用测角仪测量了一些角度:∠AEB=α,∠AEF=β,∠BFE=γ,∠AFB=δ.请你用文字和公式写出计算A、B之间距离的步骤.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:第一步:在△BEF中,利用正弦定理,求出BE,第二步:在△AEF中,利用正弦定理,求出AE,第三步:在△ABE中,利用余弦定理,求出AB.
解答: 解:第一步:在△BEF中,
BE
sin∠BFE
=
EF
sin∠FBE

所以BE=
asinγ
sin(α+β+γ)
,…(4分)
第二步:在△AEF中,
AE
sin∠AFE
=
EF
sin∠EAF

所以AE=
asin(γ+δ)
sin(β+γ+δ)
,…(8分)
第三步:在△ABE中,AB=
AE2+BE2-2AE×BEcosα

AB=
a2sin2(γ+δ)
sin2(β+γ+δ)
+
a2sin2γ
sin2(α+β+γ)
-
2a2sin(γ+δ)sinγcosα
sin(β+γ+δ)sin(α+β+γ)
.…(12分)
点评:本题考查利用正弦定理、余弦定理解决实际问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网