题目内容

已知关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求实数m的取值范围.
考点:函数的零点
专题:函数的性质及应用
分析:分离参数法,将原式变形为2m=-2x2+3x,然后借助于数形结合求解.
解答: 解:原方程可化为2m=-2x2+3x,该方程的根即为y=2m和y=-2x2+3x图象的交点的横坐标,
y=-2x2+3x=-2(x-
3
4
)2+
9
8
,x∈[-1,1]
做出该函数的图象如下:

当直线y=2m介于直线y=1和y=
9
8
之间时,有两个交点,即1≤2m≤
9
8
时符合题意,解得
1
2
≤m≤
9
16
点评:本题考查了函数零点与函数图象间的关系,判断零点的个数,实际上就是判断函数图象与x轴交点的个数,或两个不同函数图象交点的个数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网